Answer:
Cl⁻ was oxidized.
Explanation:
- 4HCl + MnO₂ → Cl₂ + 2H₂O + MnCl₂
Oxidation can be defined as the process in which the oxidation number of a substance increases.
On the left side of the equation, Cl has a charge of -1 (in HCl); while on the right side of the equation Cl has a charge of 0 in Cl₂.
Thus, Cl⁻ was oxidized.
I think the correct answers from the choices listed above are the second and the last options. Organic compounds are nonducting and insoluble in water because of the bonds that these compounds contain. Most organic compounds don't dissolve in water because they are nonpolar. They don't conduct electricity because they are covalent, not ionic.
Answer:
B = (2.953 × 10⁻⁹⁵) N.m⁹
Explanation:
At equilibrium, where the distance between the two ions (ro) is the sum of their ionic radii, the force between the two ions is zero.
That is,
Fa + Fr = 0
Fa = - Fr
Fa = (|q₁q₂|)/(4πε₀r²)
Fr = -B/(r^n) but n = 9
Fr = -B/r⁹
(|q₁q₂|)/(4πε₀r²) = (B/r⁹)
|q₁| = |q₂| = (1.6 × 10⁻¹⁹) C
(1/4πε₀) = k = (8.99 × 10⁹) Nm²/C²
r = 0.097 + 0.181 = 0.278 nm = (2.78 × 10⁻¹⁰) m
(k|q₁q₂|)/(r²) = (B/r⁹)
(k × |q₁q₂|) = (B/r⁷)
B = (k × |q₁q₂| × r⁷)
B = [8.99 × 10⁹ × 1.6 × 10⁻¹⁹ × 1.6 × 10⁻¹⁹ × (2.78 × 10⁻¹⁰)⁷]
B = (2.953 × 10⁻⁹⁵) N.m⁹
Answer:
f = 33.34 Hz
Explanation:
A wave has a period of 0.03 seconds. It is required to find the frequency of a wave. The relation between time period and frequency is inverse. The time period of a wave is given by :
T = 1/f, f = frequency of wave

So, the frequency of the wave is 33.34 Hz.