Answer:
I would say the correct answer is <em><u>A 200.00 mol</u></em>
Explanation:
Hope this help
Have a nice day
Answer: Option (a) is the correct answer.
Explanation:
A weak acid is defined as an acid that dissociates partially when dissolve in water or a polar solvent.
For example, acetic acid is a weak acid and when dissolved in water it dissociates partly into ions as follows.

And, a strong acid is defined as an acid which when dissolved in water dissociates completely into ions.
For example, HCl is a strong acid and when dissolved in water it dissociates completely.

Thus, we can conclude that the statement a weak acid solution consists of mostly non-ionized acid molecules, is true.
Answer:
The maximum amount of work that can be done by this system is -2.71 kJ/mol
Explanation:
Maximum amount of work denoted change in gibbs free energy
during the reaction.
Equilibrium concentration of B = 0.357 M
So equilibrium concentration of A = (1-0.357) M = 0.643 M
So equilibrium constant at 253 K, ![K_{eq}= \frac{[B]}{[A]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%20%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
[A] and [B] represent equilibrium concentrations

When concentration of A = 0.867 M then B = (1-0.867) M = 0.133 M
So reaction quotient at this situation, 
We know, 
where R is gas constant and T is temperature in kelvin
Here R is 8.314 J/(mol.K), T is 253 K, Q is 0.153 and
is 0.555
So, 
= -2710 J/mol
= -2.71 kJ/mol
Answer:
V₂ = 4.82 L
Explanation:
Given data:
Initial volume of gas = 3.5 L
Initial pressure = 115 Kpa
Final volume = ?
Final Pressure = 625 torr
Solution:
Final Pressure = 625 torr (625/760 =0.82 atm)
Initial pressure = 115 Kpa (115/101 = 1.13 atm)
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
1.13 atm × 3.5 L = 0.82 atm × V₂
V₂ = 3.955 atm. L/0.82 atm
V₂ = 4.82 L