Answer:
mass =25 kg
using clockwise moment = anticlockwise moment
Given Information:
Angular displacement = θ = 51 cm = 0.51 m
Radius = 1.8 cm = 0.018 m
Initial angular velocity = ω₁ = 0 m/s
Angular acceleration = α = 10 rad/s
²
Required Information:
Final angular velocity = ω₂ = ?
Answer:
Final angular velocity = ω₂ = 21.6 rad/s
Explanation:
We know from the equations of kinematics,
ω₂² = ω₁² + 2αθ
Where ω₁ is the initial angular velocity that is zero since the toy was initially at rest, α is angular acceleration and θ is angular displacement.
ω₂² = (0)² + 2αθ
ω₂² = 2αθ
ω₂ = √(2αθ)
We know that the relation between angular displacement and arc length is given by
s = rθ
θ = s/r
θ = 0.51/0.018
θ = 23.33 radians
finally, final angular velocity is
ω₂ = √(2αθ)
ω₂ = √(2*10*23.33)
ω₂ = 21.6 rad/s
Therefore, the top will be rotating at 21.6 rad/s when the string is completely unwound.
B.) 100 N is the CORRECT answer
Please mark as brainliest! :)
Answer:
None.
Explanation:
The weight of the astronaut is equal to the force of gravity the astronaut feels that depends on the mass of the planet.
Because the mass of the Earth is different than that of Jupiter, Saturn and Mars, the astronaut's weight will change when he/she travels to either planets.