Answer:
31.831 Hz.
Explanation:
<u>Given:</u>
The vertical displacement of a wave is given in generalized form as

<em>where</em>,
- A = amplitude of the displacement of the wave.
- k = wave number of the wave =

= wavelength of the wave.- x = horizontal displacement of the wave.
= angular frequency of the wave =
.- f = frequency of the wave.
- t = time at which the displacement is calculated.
On comparing the generalized equation with the given equation of the displacement of the wave, we get,

therefore,

It is the required frequency of the wave.
Gravity is all ways pulling down and the normal force acting on top of the object and for it to have to push or pull to the object
Answer:
The relative speed of 1 relative to 2 is 0.88c
Explanation:
In relativistic mechanics the relative speed between 2 objects moving in different direction is given by

Since it is given that

Applying values in the formula we get
