1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivanzaharov [21]
2 years ago
13

(A) The figure shows the setup which is used to observe an image formed wen a lighted candle is kept in front of a bi convex len

se.
1. Can the image be formed on the screen or not when the lighted candle is moved from F (focus) towards P (pole)?

2. Sketch the ray diagram to show how the image is formed by the lens when the candle is kept in between F and P.

3. Write 2 characteristics of the image formed in the above ray diagram.​
Physics
1 answer:
GREYUIT [131]2 years ago
6 0

Answer:

<h3>1. In the case of candle flame , the object is placed beyond c , that means the image is formed or focused between c and f .in second case the object or sun is at infinity , so the image will be </h3><h3>formed at focus.this means the distance between image and lens has decreased in the second </h3><h3>case. either we have to move the screen towards the lens or the lens towards the screen.</h3>

Explanation:

I have posted the drawing.

in the second image

it is project c and characteristics

hope it helps u :)

You might be interested in
Blood is 92% water. Blood is
Pepsi [2]

Answer:

Plasma, which constitutes 55% of blood fluid, is mostly water (92% by volume), and contains proteins, glucose, mineral ions, hormones, carbon dioxide (plasma being the main medium for excretory product transportation), and blood cells themselves.

Explanation:

6 0
2 years ago
8.
eimsori [14]
B. Unbalanced force
3 0
3 years ago
In 1610, galileo used his telescope to discover four prominent moons around jupiter. their mean orbital radii a and periods t ar
katrin2010 [14]

Time period of any moon of Jupiter is given by

T = 2\pi \sqrt{\frac{r^3}{GM}}

from above formula we can say that mass of Jupiter is given by

M = \frac{4 \pi^2 r^3}{GT^2}

now for part a)

r = 4.22 * 10^8 m

T = 1.77 day = 152928 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (4.22 * 10^8)^3}{(6.67 * 10^{-11})(152928)^2}

M = 1.9* 10^{27} kg

Part B)

r = 6.71 * 10^8 m

T = 3.55 day = 306720 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (6.71 * 10^8)^3}{(6.67 * 10^{-11})(306720)^2}

M = 1.9* 10^{27} kg

Part c)

r = 10.7 * 10^8 m

T = 7.16 day = 618624 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (10.7 * 10^8)^3}{(6.67 * 10^{-11})(618624)^2}

M = 1.89* 10^{27} kg

PART D)

r = 18.8 * 10^8 m

T = 16.7 day = 1442880 seconds

now by above formula

M = \frac{4 \pi^2 r^3}{GT^2}

M = \frac{4 \pi^2 (18.8 * 10^8)^3}{(6.67 * 10^{-11})(1442880)^2}

M = 1.889* 10^{27} kg

6 0
3 years ago
HELP ASAPP
Travka [436]
Radioactive dating :)
3 0
2 years ago
A mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. Initially, the mass is released from rest fro
svetoff [14.1K]

Answer:

The equation of motion is x(t)=-\frac{1}{3} cos4\sqrt{6t}

Explanation:

Lets calculate

The weight attached to the spring is 24 pounds

Acceleration due to gravity is 32ft/s^2

Assume x , is spring stretched length is ,4 inches

Converting the length inches into feet x=\frac{4}{12} =\frac{1}{3}feet

The weight (W=mg) is balanced by restoring force ks at equilibrium position

mg=kx

W=kx ⇒ k=\frac{W}{x}

The spring constant , k=\frac{24}{1/3}

                            = 72

If the mass is displaced from its equilibrium position by an amount x, then the differential equation is

    m\frac{d^2x}{dt} +kx=0

    \frac{3}{4} \frac{d^2x}{dt} +72x=0

  \frac{d^2x}{dt} +96x=0

Auxiliary equation is, m^2+96=0

                                 m=\sqrt{-96}

                               =\frac{+}{} i4\sqrt{6}

Thus , the solution is x(t)=c_1cos4\sqrt{6t}+c_2sin4\sqrt{6t}

                                 x'(t)=-4\sqrt{6c_1} sin4\sqrt{6t}+c_2  4\sqrt{6} cos4\sqrt{6t}

The mass is released from the rest x'(0) = 0

                    =-4\sqrt{6c_1} sin4\sqrt{6(0)}+c_2 4\sqrt{6} cos4\sqrt{6(0)} =0

                                                    c_2 4\sqrt{6} =0

                                     c_2=0

Therefore , x(t)=c_1 cos 4\sqrt{6t}

Since , the mass is released from the rest from 4 inches

                    x(0)= -4 inches

c_1 cos 4\sqrt{6(0)} =-\frac{4}{12} feet

   c_1=-\frac{1}{3} feet

Therefore , the equation of motion is  -\frac{1}{3} cos4\sqrt{6t}

7 0
2 years ago
Other questions:
  • A pebble is thrown into a calm lake, ripples are formed from the center and move outward. The water particles in the lake travel
    15·2 answers
  • What was the only option for getting the Apollo 13 astronauts back to Earth alive?
    9·2 answers
  • Tara heated a beaker on a hot plate. Then, she set the solution on the countertop to cool. Her lab partner, Molly, did not reali
    14·1 answer
  • To practice Problem-Solving Strategy 21.1 Coulomb's Law. Three charged particles are placed at each of three corners of an equil
    15·1 answer
  • Suppose you lived in the crater Copernicus on the side of the Moon facing Earth.
    7·1 answer
  • Why do you think drug abuse is so pervasive in the United States?
    6·1 answer
  • An automotive air conditioner produces a 1-kW cooling effect while consuming 0.75 kW of power. What is the rate at which heat is
    10·1 answer
  • Two students measure the speed of light. One obtains (3.001 0.001)10^8 m/s; the other obtains (2.999 0.006)10^8 m/s.Required:Whi
    11·1 answer
  • Suppose that it takes 0.6 seconds for a mass on a spring to move from its
    7·1 answer
  • Calculate ine gravitational potential energy of the ball using pe=m×g×h.(use g=9.8 n/kg)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!