The solid compound, K2SO4 contains a cation called K+ and an anion called SO42-. In this case, there are 2 atoms of potassium, 1 atom of sulfur and 4 moles of oxygen. The compound also contains ionic bonds because of the composing non-metals and metal.
Answer: 0.055 moles of
are produced by the reaction of 0.055 mol of ammonium perchlorate.
Explanation:
The balanced chemical reaction for decomposition of ammonium perchlorate is:
According to stoichiometry :
2 moles of
produce = 2 moles of
Thus 0.055 moles of
will produce =
of
Thus 0.055 moles of
are produced by the reaction of 0.055mol of ammonium perchlorate.
the branch of science that deals with the identification of the substances of which matter is composed; the investigation of their properties and the ways in which they interact, combine, and change; and the use of these processes to form new substances.the branch of science that deals with the identification of the substances of which matter is composed; the investigation of their properties and the ways in which they interact, combine, and change; and the use of these processes to form new substances.
Explanation:
when an iron bar rust is an example of a chemical change in which a new substance is formed and the change is not easily reversible.for iron to rust moisture and air must be present.while when a substance freezes,it can be easily reversed through melting and no new substance is formed.this change is termed a physical change.
<u>Answer:</u> The standard free energy change of formation of
is 92.094 kJ/mol
<u>Explanation:</u>
We are given:

Relation between standard Gibbs free energy and equilibrium constant follows:

where,
= standard Gibbs free energy = ?
R = Gas constant = 
T = temperature = ![25^oC=[273+25]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5DK%3D298K)
K = equilibrium constant or solubility product = 
Putting values in above equation, we get:

For the given chemical equation:

The equation used to calculate Gibbs free change is of a reaction is:
![\Delta G^o_{rxn}=\sum [n\times \Delta G^o_f_{(product)}]-\sum [n\times \Delta G^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the Gibbs free energy change of the above reaction is:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(Ag^+(aq.))})+(1\times \Delta G^o_f_{(S^{2-}(aq.))})]-[(1\times \Delta G^o_f_{(Ag_2S(s))})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28Ag%5E%2B%28aq.%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28Ag_2S%28s%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![285.794=[(2\times 77.1)+(1\times \Delta G^o_f_{(S^{2-}(aq.))})]-[(1\times (-39.5))]\\\\\Delta G^o_f_{(S^{2-}(aq.))=92.094J/mol](https://tex.z-dn.net/?f=285.794%3D%5B%282%5Ctimes%2077.1%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%7D%29%5D-%5B%281%5Ctimes%20%28-39.5%29%29%5D%5C%5C%5C%5C%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%3D92.094J%2Fmol)
Hence, the standard free energy change of formation of
is 92.094 kJ/mol