Answer:
0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).
Explanation:
<em>d = m/V,</em>
where, d is the density of the material (g/cm³).
m is the mass of the material (m = 28 g).
V is the volume of the material (V = 63.0 cm³).
<em>∴ d = m/V </em>= (28 g)/(63.0 cm³) = <em>0.4444 g/cm³ ≅ 0.44 g/cm³ (2 significant figures).</em>
Answer:
carbon dioxide concentration goes down, temperature goes down. Carbon dioxide goes up temp goes up, carbon dioxide is directly related to temperature by insulating it in the earths atmosphere and if there's less of it then the temp would go down.
Explanation:
Answer:
mol times or devided by molar volume
Answer:
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Explanation:
Step 1: Data given
Initial temperature = 10.0 °C
Final temperature = 25.0 °C
Energy required = 30000 J
Mass of the object = 40.0 grams
Step 2: Calculate the specific heat capacity of the object
Q = m* c * ΔT
⇒With Q = the heat required = 30000 J
⇒with m = the mass of the object = 40.0 grams
⇒with c = the specific heat capacity of the object = TO BE DETERMINED
⇒with ΔT = The change in temperature = T2 - T2 = 25.0 °C - 10.0°C = 15.0 °C
30000 J = 40.0 g * c * 15.0 °C
c = 30000 J / (40.0 g * 15.0 °C)
c = 50 J/g°C
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Answer:
room temperature
Explanation:
what i think this is the answer do u know ans