<span>is a mixture that composes of components that aren't uniform or they have localized regions that all have different properties. Despite the term appearing to be highly scientific, there are various common substances that are heterogeneous mixtures
</span>
Balanced equation :
Cu(NO₃)₂(aq) + 2KOH(aq) → Cu(OH)₂(s) + 2KNO₃(aq)
Balancing a chemical equation :
A chemical equation shows us the substances involved in a chemical reaction - the substances that react (reactants) and the substances that are produced (products). In general, a chemical equation looks like this:
Reactant →Product
According to the law of conservation of mass, when a chemical reaction occurs, the mass of the products should be equal to the mass of the reactants. Therefore, the amount of the atoms in each element does not change in the chemical reaction. As a result, the chemical equation that shows the chemical reaction needs to be balanced. A balanced chemical equation occurs when the number of the atoms involved in the reactants side is equal to the number of atoms in the products side.
Learn more about balanced equation :
brainly.com/question/15355912
#SPJ4
117 333.333 m-1 your welco
Answer:
2 Fe(iii)2O3 + 3 C ==> 2 Fe + 3 CO2
Explanation:
First of all, you have to translate the words into an equation.
Fe(iii)2O3 + C ==> Fe + CO2
The easiest way to tackle this is to start with the Oxygens and balance them. They must balance by going to the greatest common factor which is 6. So you multiply the molecule by whatever it takes to get the Oxygens to 6
2 Fe(iii)2O3 + C ==> Fe + 3 CO2
Now work on the irons. There 2 on the left and just 1 on the right. So you need to multiply the iron by 2.
2 Fe(iii)2O3 + C ==> 2 Fe + 3 CO2
Finally it is the turn of the carbons. There are 3 on the right, so you must make the carbon on the left = 3
2 Fe(iii)2O3 + 3 C ==> 2 Fe + 3 CO2
And you are done.
Answer:
13.5 %
Explanation:
First we<u> calculate the mass of 500 mL of water</u>, using <em>its density</em>:
- 500 mL * 1.00 g/mL = 500 g
Then we <u>calculate the mass percent of potassium sulfate</u>, using the formula:
Mass of Potassium Sulfate / Total Mass * 100%
- 78 g / (78 + 500) g * 100 % = 13.5 %