They are called ISOTOPES.
:)
Answer: orderly arrangement of particles
Explanation:
In a crystaline solid, the particles that compose the solid are arranged or packed in an orderly manner to form a three dimensional crystal lattice with a defined structure. Sodium chloride is a crystaline solid.
In an amorphous solid, the particles that compose the solid aren't arranged in an orderly manner hence the solid tends to be brittle, e.g glass
Answer:
a) 40,75 atm
b) 30,11 atm
Explanation:
The Ideal Gas Equation is an equation that describes the behavior of the ideal gases:
PV = nRT
where:
- P = pressure [atm]
- V = volume [L]
- n = number of mole of gas [n]
- R= gas constant = 0,08205 [atm.L/mol.°K]
- T=absolute temperature [°K]
<em>Note: We can express this values with other units, but we must ensure that the units used are the same as those used in the gas constant.</em>
The truncated virial equation of state, is an equation used to model the behavior of real gases. In this, unlike the ideal gas equation, other parameters of the gases are considered as the <u>intermolecular forces</u> and the <u>space occupied</u> by the gas

where:
- v is the molar volume [L/mol]
- B is the second virial coefficient [L/mol]
- P the pressure [atm]
- R the gas constant = 0,08205 [atm.L/mol.°K]
a) Ideal gas equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
We clear pressure of the idea gas equation and replace the data:
PV = nRT ..... P = nRT/V = 5 * 0,08205 * 298/3 =40,75 atm
b) Truncated virial equation:
We convert our data to the adecuate units:
n = 5 moles
V = 3 dm3 = 3 L
T = 25°C = 298°K
B = -156,7*10^-6 m3/mol = -156,7*10^-3 L/mol
We clear pressure of the idea gas equation and replace the data:

and v = 3 L/5 moles = 0,6 L/mol

Group 18 is known as the Noble/ Inert Gases
Answer:but-1-ene
Explanation:This is an E2 elimination reaction .
Kindly refer the attachment for complete reaction and products.
Sodium tert-butoxide is a bulky base and hence cannot approach the substrate 2-chlorobutane from the more substituted end and hence major product formed here would not be following zaitsev rule of elimination reaction.
Sodium tert-butoxide would approach from the less hindered side that is through the primary centre and hence would lead to the formation of 1-butene .The major product formed in this reaction would be 1-butene .
As the mechanism of the reaction is E-2 so it will be a concerted mechanism and as sodium tert-butoxide will start abstracting the primary hydrogen through the less hindered side simultaneously chlorine will start leaving. As the steric repulsion in this case is less hence the transition state is relatively stabilised and leads to the formation of a kinetic product 1-butene.
Kinetic product are formed when reactions are dependent upon rate and not on thermodynamical stability.
2-butene is more thermodynamically6 stable as compared to 1-butene
The major product formed does not follow the zaitsev rule of forming a more substituted alkene as sodium tert-butoxide cannot approach to abstract the secondary proton due to steric hindrance.