Answer:
Redox type
Explanation:
The reaction is:
2Cr + 3Fe(NO₃)₂ → 2Fe + 2Cr(NO₃)₃
2 moles of chromium can react to 3 moles of iron (II) nitrate in order to produce 2 moles of iron and 2 moles of chromium nitrate.
If we see oxidation state, we see that chromium changes from 0 to +3
Iron changed the oxidation state from +2 to 0
Remember that elements at ground state has 0, as oxidation state.
Iron is being reduced while chromium is oxidized. Then, the half reactions are:
Fe²⁺ + 2e⁻ ⇄ Fe (Reduction)
Cr ⇄ Cr³⁺ + 3e⁻ (Oxidation)
When an element is being reduced, while another is being oxidized, we are in prescence of a redox reaction.
C7H16, where C=12.01, and H=1.01, so the weight of the molecule would be 7(12.01)+16(1.01), or 100.23. The percentage of carbon would be found by ((7*12.01)/100.23)*100=83.88% Carbon
((16*1.01)/100.23)*100=16.12% Hydrogen
Diamonds are composed of carbon in a tetrahedral lattice. That is option C.
<h3>What is a diamond?</h3>
A diamond of defined as an allotrope or one of the major forms of the element, carbon in nature.
These carbon atoms are arranged within the diamond in a face centered cubic tetrahedral lattice shape.
Therefore, Diamonds are composed of carbon in a tetrahedral lattice.
Learn more about carbon here:
brainly.com/question/19083306
#SPJ1
Answer:
Polymerization, any process in which relatively small molecules, called monomers, combine chemically to produce a very large chainlike or network molecule, called a polymer
Explanation:
The correct answer is higher melting point, bound by metal metal bonds.
While alkali metals only have one valence electron, alkaline earth metals have two. Metal to metal connections hold the metals together. Alkaline earth metals have a stronger metallic connection and a higher melting point because they have two valence electrons.
the characteristics that Group 2 metals excel in over Group 1 metals.
- Initial Ionization Potential
- Group 2 items are more difficult than group 1 elements.
- Strong propensity to produce bivalent compounds
As a result, group 2 metals have stronger metallic bonding, which leads to increased cohesive energy and compact atom packing. This explains why group 2 metals are harder and have higher melting and boiling temperatures than group 1 metals.
To learn more about Group 2A(2) refer the link:
brainly.com/question/9431096
#SPJ4