When it comes to ecosystems, a mountain, a river, and a cloud have more in common than you might think. Abiotic factors have specific and important roles in nature because they help shape and define ecosystems.
Biotic and Abiotic Factors
An ecosystem is defined as any community of living and non-living things that work together. Ecosystems do not have clear boundaries, and it may be difficult to see where one ecosystem ends and another begins. In order to understand what makes each ecosystem unique, we need to look at the biotic and abiotic factors within them. Biotic factors are all of the living organisms within an ecosystem. These may be plants, animals, fungi, and any other living things. Abiotic factors are all of the non-living things in an ecosystem.
Both biotic and abiotic factors are related to each other in an ecosystem, and if one factor is changed or removed, it can affect the entire ecosystem. Abiotic factors are especially important because they directly affect how organisms survive.
Examples of Abiotic Factors
Abiotic factors come in all types and can vary among different ecosystems. For example, abiotic factors found in aquatic systems may be things like water depth, pH, sunlight, turbidity (amount of water cloudiness), salinity (salt concentration), available nutrients (nitrogen, phosphorous, etc.), and dissolved oxygen (amount of oxygen dissolved in the water). Abiotic variables found in terrestrial ecosystems can include things like rain, wind, temperature, altitude, soil, pollution, nutrients, pH, types of soil, and sunlight.
The boundaries of an individual abiotic factor can be just as unclear as the boundaries of an ecosystem. Climate is an abiotic factor - think about how many individual abiotic factors make up something as large as a climate. Natural disasters, such as earthquakes, volcanoes, and forest fires, are also abiotic factors. These types of abiotic factors certainly have drastic effects on the ecosystems they encounter.
A special type of abiotic factor is called a limiting factor. Limiting factors keep populations within an ecosystem at a certain level. They may also limit the types of organisms that inhabit that ecosystem. Food, shelter, water, and sunlight are just a few examples of limiting abiotic factors that limit the size of populations. In a desert environment, these resources are even scarcer, and only organisms that can tolerate such tough conditions survive there. In this way, the limiting factors are also limiting which organisms inhabit this ecosystem.
Answer:
D. Positively charged particles
Explanation:
Negatively charged particles are attracted to positively charged particles and repelled against negatively charged particles
Total vapor pressure can be calculated using partial vapor pressures and mole fraction as follows:

Here,
is mole fraction of A,
is mole fraction of B,
is partial pressure of A and
is partial pressure of B.
The mole fraction of A and B are related to each other as follows:

In this problem, A is hexane and B is octane, mole fraction of hexane is given 0.580 thus, mole fraction of octane can be calculated as follows:

Partial pressure of hexane and octane is given 183 mmHg and 59.2 mmHg respectively.
Now, vapor pressure can be calculated as follows:

Putting the values,

Therefore, total vapor pressure over the solution of hexane and octane is 131 mmHg.
Answer:
studies
Explanation:
if they get plenty of studies then they get it