1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivanzaharov [21]
3 years ago
9

A football tube in the form of a sphere is inflated so that it radius increases in the ratio 4:3 . Find the ratio in which the v

olume is increased. ​
Physics
1 answer:
vodomira [7]3 years ago
4 0

Answer:

<em>The volume is increased in a ratio of 64/27</em>

Explanation:

<u>The Volume of a Sphere </u>

The volume of a sphere of radius r is given by:

\displaystyle V=\frac{4}{3}\cdot \pi\cdot r^3

If the radius was changed to r', the new volume would be:

\displaystyle V'=\frac{4}{3}\cdot \pi\cdot r'^3

Dividing the latter equation by the first one:

\displaystyle \frac{V'}{V}=\frac{\frac{4}{3}\cdot \pi\cdot r'^3}{\frac{4}{3}\cdot \pi\cdot r^3}

Simplifying:

\displaystyle \frac{V'}{V}=\frac{r'^3}{r^3}

Or, equivalently:

\displaystyle \frac{V'}{V}=\left(\frac{r'}{r}\right)^3

Since r':r = 4:3, thus:

\displaystyle \frac{V'}{V}=\left(\frac{4}{3}\right)^3

\displaystyle \frac{V'}{V}=\frac{4^3}{3^3}

\displaystyle \frac{V'}{V}=\frac{64}{27}

The volume is increased in a ratio of 64/27

You might be interested in
A straight line is drawn on the surface of a 14-cm-radius turntable from the center to the perimeter. A bug crawls along this li
sleet_krkn [62]

Answer:

v = \left[\begin{array}{c}0.66&0\end{array}\right]m/s

Explanation:

The position vector r of the bug with linear velocity v and angular velocity ω in the laboratory frame is given by:

\overrightarrow{r}=vtcos(\omega t)\hat{x}+vtsin(\omega t)\hat{y}

The velocity vector v is the first derivative of the position vector r with respect to time:

\overrightarrow{v}=[vcos(\omega t)-\omega vtsin(\omega t)]\hat{x}+[vsin(\omega t)+\omega vtcos(\omega t)]\hat{y}

The given values are:

t=\frac{x}{v}=\frac{14}{3.8}=3.7 s

\omega=\frac{45\times2\pi}{60s}=4.7\frac{1}{s}

8 0
3 years ago
About how many centimeters will make an inch?<br> 02<br> O 10<br> 100<br> 200
Tresset [83]
There is approximately 2.54 cm that equals to 1 inch. So your closet answer would be the first choice. :)
7 0
3 years ago
Read 2 more answers
There are no current plans for returning to the moon. <br> True<br> False
inysia [295]
True that’s my answer
8 0
3 years ago
Read 2 more answers
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
3 years ago
two cars are traveling in opposite directions on the thruway. car a is traveling at 55mi/h and car b is traveling at 70 mi/h the
Tresset [83]

a minute or less than a minute

3 0
3 years ago
Other questions:
  • Can the reaction distance be a negitive?
    8·1 answer
  • If the distance between the bounces were 1.95 m instead of 1.30 m, but the height remained at 1.30 m, which of your answers to P
    5·1 answer
  • How did world cup soccer become cool?
    5·1 answer
  • Drag and drop each description into the correct category
    6·1 answer
  • A machine can multiply forces for
    8·1 answer
  • 7. Un bloque de 700 N se encuentra sobre una viga uniforme de 200 N y 6 m de longitud. El bloque está a una distancia de 1 m del
    5·1 answer
  • A water pump with a power of 3.4 × 102 watts lifts water at the rate of 7.5 × 10-2 meters/second from a water tank. What is the
    8·1 answer
  • Which characteristics are possessed by a vector quantity but not by a scalar quantity?
    10·1 answer
  • ILL GIVE BRAILIST THING
    15·1 answer
  • Suppose the block is released from rest with the spring compressed 5.00 cm. The mass of the block is 1.70 kg and the force const
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!