Answer:


Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
= Mass of sphere = 2000 kg
= Mass of other sphere = 2.1 kg
r = Distance between spheres
Force of gravity is given by

The gravitational force is 

The gravitational force is 
<h2>
Answer: Pulsars</h2>
A <u>pulsar</u> is a neutron star that emits very intense electromagnetic radiation at short and periodic intervals ( rotating really fast) due to its intense magnetic field that induces this emission.
Nevertheless, it is important to note that all pulsars are neutron stars, but not all neutron stars are pulsars.
Let's clarify:
A neutron star, is the name given to the remains of a supernova. In itself it is the result of the gravitational collapse of a massive supergiant star after exhausting the fuel in its core.
Neutron stars have a small size for their very high density and they rotate at a huge speed.
However, the way to know that a pulsar is a neutron star is because of its high rotating speed.
Answer:
416.667 m/s
Explanation:
divide the distance by the time
Answer:
F = 878.9 N
Explanation:
The electrostatic force of attraction or repulsion is given by Coulomb's Law as follows:
F = kq₁q₂/r²
where,
F = Force pf repulsion between balloons = ?
k = Coulomb's Constant = 9 x 10⁹ N.m²/C²
q₁ = q₂ = magnitudes of 1st and 2nd charge = 0.0025 C
r = distance between balloons = 8 m
Therefore,
F = (9 x 10⁹ N.m²/C²)(0.0025 C)(0.0025 C)/(8 m)²
<u>F = 878.9 N</u>
Answer:
mass of block=2.7 gm
Explanation:
concept: Density=mass/volume
given:ρ=2700 kg/m^3 and v=250 cm^3 (in cm^3 not in m^3)
=> v= convert cm^3 to m^3
there fore= 1 cm^3=1 cm*1 cm*1 cm
i.e 1 cm^3=1/100*1/00*1/100 m^3 => 1 cm^3=1/1000000 m^3
ρ=m/v
=>mass=ρ*volume
=>mass=2700*1/10^-6
=>mass=2.7*10^-3 kg =>2.7 gm