What your saying doesn't make sense.
Answer:
a = ω^2 A formula for max acceleration (ignoring sign)
V = ω A formula for max velocity
V^2 = ω^2 A^2 = a A from first equation
E = 1/2 M V^2 = 1/2 * 2.98 * 3.55 * .0805 = .426 J
(kg * m/sec^2 * m = kg m^2 / sec^2 = Joule
Answer:
Sound waves are longitudinal in nature.
Explanation:
There are many types of waves like transverse, longitudinal, electromagnetic wave etc.
Sound waves are longitudinal in nature. In longitudinal type of wave, the medium particles moves parallel to the propagation of the wave. This type of waves move in the form of compression and rarefaction.
In compression, the particle density at a point is very less while in rarefaction, the particle density at a point is very high.
So, the correct option is (b) "longitudinal wave".
The correct answer is 1.07m.
The area surrounding an electric charge where its impact may be felt is known as the electric field. When another charge enters the field, the presence of an electric field may be felt. The electric field will either attract or repel the charge depending on its makeup. Any electric charge has a property known as the electric field. The charge and electrical force working in the field determine the strength or intensity of the electric field.
Here, is the charge per unit length, r is the distance from the wire, and
is the free space permittivity ε_0. Electric field due to the long straight wire is,
E= λ/2πε_0r
Rearrange the equation for r.
r=λ/2πε_0E
Substitute 2.41 N/C for E,
E=1.44×10^-10C/m
λ=8.85×10^-12C^2/Nm^2
r=(1.44×10^-10C/m)/(2(3.14)(8.85×10^-12C^2/Nm^2)(2.41N/C))
r=1.07m
At a distance of 1.07 m the magnitude of electric field is 2.41 N/C.
To learn more about electric field refer the link:
brainly.com/question/12821750
#SPJ4