Answer:  gas molecules will hit the container walls more frequently and with greater force
Explanation:
According to the postulates of  kinetic molecular theory:
1. The pressure exerted by a gas in a container results from collisions between the gas molecules and the container walls.
2. The average kinetic energy of the gas molecules is proportional to the kelvin temperature of the gas.
When the temperature is increased, so the average kinetic energy and the rms speed also increase. This means that the gas molecules will hit the container walls more frequently and with greater force because they are all moving faster. This increase the pressure.
 
        
             
        
        
        
B steam causes wheels to turn is correct
        
             
        
        
        
Answer:
The rate would be lower and the concentration of reactants would be lower.
Explanation:
The rate of a chemical reaction depends on the rate constant and the concentration of reactants.
For Ex:
For a reaction experimentally given by A + B ----> C + D
Rate = k[A][B]
where k is the rate constant 
           [A] = concentration of reactant A
           [B] = concentration of reactant B
As the reaction proceeds,the concentration of reactant decrease and concentration of products increase.Rate constant k depends only on temperature and activation energy.Hence it will remain constant throughout the reaction assuming that reaction is carried out at constant temperature and pressure.
Hence rate will depend only on concentration of reactants and hence decrease with decrease in concentration of reactants.