Answer:
V = 34430 mL
Explanation:
Given data:
Volume in mL = ?
Number of moles of gas = 2.00 mol
Temperature = 36°C (36+273= 309K)
Pressure of gas = 1120 torr
Solution:
Formula:
PV = nRT
V = nRT/P
V = 2.00 mol ×62.4 torr • L/mol · K × 309K / 1120 torr
V = 38563.2 torr • L / 1120 torr
V = 34.43 L
L to mL
34.43 L ×1000 mL / 1 L
34430 mL
Answer:
1.37cm
Explanation:
It's less than 1.4cm but more than 1.3cm. It's also more than 1.35cm so I guess the best answer would be 1.37cm or round up to 1.4cm
Answer:
Nucleus
Explanation:
Nucleus is your blueprint for the cell. It has all the directions packaged in tiny DNA molecules. The nucleus of a cell is an organelle that stores the cell's hereditary material, or DNA, and it coordinates the cell's activities, which include growth, intermediary metabolism, protein synthesis, and reproduction.
Answer:
0.185moles
Explanation:
Given parameters:
Volume of O₂ = 49.8L
Unknown:
Number of moles of sucrose required = ?
Solution:
We can assume that the reaction takes place at standard temperature and pressure.
From this, we can find the number of moles of oxygen that reacted and extrapolate to that of sucrose.
Chemical equation;
C₁₂H₂₂0₁₁ + 120₂ → 12CO₂ + 11H₂0
Number moles =
at STP
Number of moles of oxygen gas =
= 2.22moles
12 moles of oxygen gas combines with 1 mole of sucrose
2.22 moles of oxygen gas will combine with
= 0.185moles
Since
21.2 g H2O was produced, the amount of oxygen that reacted can be obtained
using stoichiometry. The balanced equation was given: 2H₂ + O₂ → 2H₂O and
the molar masses of the relevant species are also listed below. Thus, the
following equation is used to determine the amount of oxygen consumed.
Molar mass of H2O = 18
g/mol
Molar mass of O2 = 32
g/mol
21.2 g H20 x 1 mol
H2O/ 18 g H2O x 1 mol O2/ 2 mol H2O x 32 g O2/ 1 mol O2 = 18.8444 g O2
<span>We then determine that
18.84 g of O2 reacted to form 21.2 g H2O based on stoichiometry. It is
important to note that we do not need to consider the amount of H2 since we can
derive the amount of O2 from the product. Additionally, the amount of H2 is in
excess in the reaction.</span>