Answer:
Its not A..
Explanation:
I chose A - was incorrect
All of the following are non-renewable resources except
O natural gas
O oil
O minerals
O <em>water ✓ </em>
- <em>Water </em><em>is </em><em>a </em><em>renewable </em><em>source </em><em>because </em><em>evaporation </em><em>and </em><em>condensation </em><em>takes </em><em>place </em><em>everytime </em><em>on </em><em>our </em><em>planet</em>
Answer:
9.43 m/s
Explanation:
First of all, we calculate the final kinetic energy of the car.
According to the work-energy theorem, the work done on the car is equal to its change in kinetic energy:

where
W = -36.733 J is the work done on the car (negative because the car is slowing down, so the work is done in the direction opposite to the motion of the car)
is the final kinetic energy
is the initial kinetic energy
Solving,

Now we can find the final speed of the car by using the formula for kinetic energy

where
m = 661 kg is the mass of the car
v is its final speed
Solving for v, we find

Answer:
54%
Explanation:
So, we have that the "magnitude of its displacement from equilibrium is greater than (0.66)A—''. Thus, the first step to take in answering this question is to write out the equation showing the displacement in simple harmonic motion which is = A cos w×t.
Therefore, we will have two instances t the displacement that is to say at a point 2π/w - a2 and the second point at a = a2.
Let us say that 2π/w = A, then, we have that a = A cos ^-1 (0.66)/2π. Also, we have that a2 = A/2 - A cos^- (0.66) / 2π.
The next thing to do is to calculate or determine the total length of of the required time. Thus, the total length is given as:
2a1 + ( A - 2a2) = 2A{ cos^-1 (0.66)}/ π.
Therefore, the total percentage of the period does the mass lie in these regions = 100 × {2a1 + ( A - 2a2) }/A = 2 { cos^-1 (0.66)}/ π × 100 = 54%.
Thus, the total percentage of the period does the mass lie in these regions = 54%.
Answer:

Explanation:
The system can be modelled appropriately by the use of the Principle of Momentum Conservation and Impact Theorem:

The average force exerted on her:
