Answer:
10.6 s
Explanation:
Given that a girl is running the 200 m dash. She starts by acceleration at 8m/s^2 for 7s. Then continues at this speed until the end of the race. How long did it take for her to complete the race?
Solution.
If she accelerated for 7s, the velocity at which she accelerated will be:
Acceleration = velocity/time
8 = V/7
Make V the subject of the formula by cross multiplying.
V = 8 × 7
V = 56 m/s
She maintains the speed through out the journey.
Speed = distance/time
Make time the subject of formula
Time = distance/speed
Time = 200 / 56
Time = 3.57s
Therefore, she will complete the race by 7 + 3.6 = 10.6 s
Answer:
P(final) is 2.4 times P(initial).
Explanation:
Here we can assume that the cylinder did not break and it's volume and number of moles of gas present in the cylinder remains constant.
Given the temperature increases by a factor of 2.4. Let us assume that the initial temperature be
and the final temperature be
.
Given that 
Now we know the ideal gas equation is PV=nRT
here V=constant , n=constant , R=gas constant(which is constant).





Explanation :
It is given that,
Potential energy, 
Power dissipated, 
We know that the power dissipated is given by :

I is the current passing through the phone.



or
I = 0.018 A
Hence, the current that passes through the phone is (1) 0.018 A.
Answer:
A or B you choose
Explanation:
This is called current electricity or an electric current. A lightning bolt is one example of an electric current, although it does not last very long. Electric currents are also involved in powering all the electrical appliances that you use, from washing machines to flashlights and from telephones to MP3 players.
what is an electrical current, amp, ampere Current is the flow of electrons. When a circuit is closed then a current of electrons can flow and when a circuit is open then no current can flow. We can measure the flow of electrons just like you can measure the flow of water through a pipe.
Answer:
Voltage-gated calcium ion channels open, and calcium ions diffuse into the cell