Answer:
113406825 N/m²
Explanation:
The pressure at depth of 11,000 m can be calculated by:
Pressure = Atmospheric pressure + Pressure due to height
Atmospheric pressure = 101325 N/m²
Also,
Where,
is the density of water (
)
g is the gravitational acceleration = 9.81 m/s²
h = 11,000 m
Pressure due to height = 113305500 N/m²
<u>Pressure = Atmospheric pressure + Pressure due to height = 101325 N/m² + 113305500 N/m² = 113406825 N/m²</u>
Answer:
0.42 M
Explanation:
The reaction that takes place is:
- Cu(CH₃COO)₂ + Na₂CrO₄ → Cu(CrO₄) + 2Na(CH₃COO)
First we <u>calculate the moles of Na₂CrO₄</u>, using the <em>given volume and concentration</em>:
(200 mL = 0.200L)
- 0.70 M * 0.200 L = 0.14 moles Na₂CrO₄
Now we <u>calculate the moles of Cu(CH₃COO)₂</u>, using its <em>molar mass</em>:
- 40.8 g ÷ 181.63 g/mol = 0.224 mol Cu(CH₃COO)₂
Because the molar ratio of Cu(CH₃COO)₂ and Na₂CrO₄ is 1:1, we can directly <u>substract the reacting moles of Na₂CrO₄ from the added moles of Cu(CH₃COO)₂</u>:
- 0.224 mol - 0.14 mol = 0.085 mol
Finally we <u>calculate the resulting molarity</u> of Cu⁺², from the <em>excess </em>cations remaining:
- 0.085 mol / 0.200 L = 0.42 M
Answer:
3
Explanation
N is 14, so multiply it by 6 (because 6 moles). Since it's N2, divide it by 2, then divide it by 14 (N in grams).
Answer:
The correct answer will be " RbF > RbCl > RbBr > Rbl".
Explanation:
The size of the given ions will be:
<u>RbCl:</u>
⇒ 689kJ/mol
<u>RbBr:</u>
⇒ 660kJ/mol
<u>Rbl:</u>
⇒ 630kJ/mol
<u>RbF:</u>
⇒ 785kJ/mol
Now according to the size, the arrangement will be:
⇒ (785kJ/mol) > (689kJ/mol) > (660kJ/mol) >(630kJ/mol)
⇒ RbF > RbCl > RbBr > Rbl
The bond among all opposite charging ions seems to be strongest whenever the ions were indeed small.
When a pot of water sits on a hot stove, the metal pot is
heated, and then transfers its heat to the water. A student claims that
conduction is the only type of heat
transfer occurring. The statement that explains why the student’s idea is
incorrect Conduction cannot occur between two different phases of matter. The answer
is letter A.