d = distance between the two point charges = 60 cm = 0.60 m
r = distance of the location of point "a" where the electric field is zero from charge
between the two charges.
= magnitude of charge on one charge
= magnitude of charge on other charge
= 3 
= Electric field by charge
at point "a"
= Electric field by charge
at point "a"
Electric field by charge
at point "a" is given as
= k
/r²
Electric field by charge
at point "a" is given as
= k
/(d-r)²
For the electric field to be zero at point "a"
=
k
/(d-r)² = k
/r²
/(d-r)² = 3
/r²
1/(0.60 - r)² = 3 /r²
r = 0.38 m
r = 38 cm
Answer:
The minimum speed required is 2.62m/s
Explanation:
The value of gravitational acceleration = g = 9.81 m/s^2
Radius of the vertical circle = R = 0.7 m
Given the mass of the pail of water = m
The speed at the highest point of the circle = V
The centripetal force will be needed must be more than the weight of the pail of water in order to not spill water.
Below is the calculation:




Answer:
D. Resultant Vector
Explanation:
By definition, adding 2 vectors gives a resultant vector
Answer:
Edison
Explanation:
Among other notable inventions, Edison and his assistants developed the first practical incandescent lightbulb in 1879 and a forerunner of the movie camera and projector in the late 1880s.
Answer:
See explanation
Explanation:
Electric field strength;
E = kq/d^2
k= coulombs constant
q= magnitude of charge
d = distance if separation
If
d is constant
q = 2q
Then;
E = 2 kq/d^2
Hence, the electric field strength will double.