1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firlakuza [10]
4 years ago
11

Compared to the charge on a proton, the amount of charge on an electron is,

Physics
1 answer:
lbvjy [14]4 years ago
3 0
Compared to the charge on a proton, the amount of charge on an electron is same and has the opposite sign
You might be interested in
Boyle's Law mainly involves _______.
goblinko [34]
Your answer is B, gases
6 0
4 years ago
A ___ is the unit of measurement for force.
bogdanovich [222]

Answer:

Newton (N)

Explanation:

A newton is the unit of measurement for force

4 0
3 years ago
5. What is the amount of force required to accelerate a 20 kg object at a rate of 5 m/sz?
GenaCL600 [577]

Force required is 100 N

<u>Given that;</u>

Rate of acceleration = 5 m/s²

Mass of object = 20kg

<u>Find:</u>

Force required

<u>Computation:</u>

Force = Mass × Acceleration

Force required = Rate of acceleration × Mass of object

Force required = 20 × 5

Force required = 100 N

Learn more:

brainly.com/question/17506203?referrer=searchResults

3 0
2 years ago
Explain why urban sprawl occurs even though it negatively impacts the environment.
Grace [21]
Urban sprawl occurs when housing is filled in one location and car dependent communities are forced to moved away from the central urban areas where the population is too vast, even though this impacts the environment by increasing pollution and causing environmental degradation.
3 0
3 years ago
Read 2 more answers
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
Other questions:
  • Which of the following describes the difference between the classes of levers?
    10·1 answer
  • True of False: Gravity is the same everywhere on Earth.
    8·2 answers
  • Why is it so important to know how the parts of a can opener work
    7·1 answer
  • Three equal 1.60-μCμC point charges are placed at the corners of an equilateral triangle with sides 0.800 mm long. What is the p
    11·1 answer
  • it is idea being transmitted by the sender to the receiver. it includes three aspects-content, structure, and style​
    14·1 answer
  • Outside of the mirror in your bathroom (or bedroom), how else are you using mirrors in your daily life?
    6·1 answer
  • A current of 5 A passes through a variable resistor set to 15 Ω. Calculate the voltage
    13·1 answer
  • A rower in a boat pushes the water using an oar.
    12·2 answers
  • What is the difference between a muscular strength exercise and a muscular endurance exercise?
    5·1 answer
  • In part a, (a) why did you set the frequency of the square wave to 0.40 hz? (b) what would have happened if you had set the freq
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!