1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad1618 [11]
3 years ago
9

Star X has an apparent magnitude of 1. Star Y has an apparent magnitude of 4. Both stars are in the same star cluster. Which sta

r is more intrinsically luminous and by what factor
Physics
1 answer:
sashaice [31]3 years ago
7 0

Answer:

Explanation:

From the given information:

Since both stars are in the same cluster, the magnitude and luminosity relationship can be calculated as:

m_1 - m_2 = -2.5 log _{10} (\dfrac{L_1}{L_2})

Given that;

m_1 = 1 and

m_2 = 4

Therefore,

1 - 4 = -2.5 log _{10} ( \dfrac{L_1}{L_2})

3 = -2.5 log _{10} ( \dfrac{L_1}{L_2})

Making \dfrac{L_1}{L_2} the subject of the formula:

\implies \dfrac{L_1}{L_2}= 10^{(\dfrac{3}{2.5})}

=15.84

≅ 16

Hence, we can conclude that star X is more luminous by a factor of 16

You might be interested in
Multiple-Concept Example 9 reviews the concepts that are important in this problem. A drag racer, starting from rest, speeds up
Mademuasel [1]

Answer:

V = 90.51 m/s

Explanation:

From the given information:

Initial speed (u) = 0

Distance (S) = 391 m

Acceleration (a) = 18.9 m/s²

Using the relation for the equation of motion:

v² - u² = 2as

v² - 0² = 2as

v² = 2as

v = \sqrt{2as}

v = \sqrt{2*18.9*391}

v = 121.57 m/s

After the parachute opens:

The initial velocity = 121.57 m/ss

Distance S' = 332 m

Acceleration = -9.92 m/s²

How fast is the racer can be determined by using the relation:

V=  \sqrt{v^2 + 2aS'}

V = \sqrt{121.57^2+ 2 (-9.92)(332)}

V = 90.51 m/s

6 0
3 years ago
A glider with mass m = 0.230 kg sits on a frictionless horizontal air track, connected to a spring with force constant k = 4.50
loris [4]

Answer

given,

mass of glider = 0.23 Kg

spring constant = k = 4.50 N/m

spring stretched to 0.130 m

The springs potential energy =

 U = \dfrac{1}{2}kx^2

 U = \dfrac{1}{2}\times 4.5 \times 0.13^2

        U = 0.038 J

at x = 0,the only energy will be kinetic .

 \dfrac{1}{2}mv^2=0.038

 \dfrac{1}{2}\times 0.23 \times v^2=0.038

         v² = 0.3304

         v = 0.575 m/s

displacement of the glider

      using conservation of energy

 \dfrac{1}{2}mv^2=\dfrac{1}{2}kx^2

 x =v\sqrt{\dfrac{m}{k}}

 x =3\times \sqrt{\dfrac{0.23}{4.5}}

        x = 0.678 m

8 0
3 years ago
Propose a hypothesis for how the position of the ball will affect the amount of its gravitational pull energy
Ray Of Light [21]

<em><u>throwing a ball up initially has a lot of kinetic energy because it is moving upwards ( kinetic energy is energy which a body possesses by virtue of being in motion.) this all then get converted to gravitational potential energy, and for a moment it is stationary before it begins to fall again.  by the time it has returned again, all the gravitational potential energy has turned back into kinetic.</u></em>

4 0
3 years ago
"Videos of hoverboard riders who were injured when they fell while operating their hoverboards at a low speeds "went viral" over
bagirrra123 [75]

Answer:

The answer is "No, Hoverboards are risky, and riders are in danger of falling".

Explanation:

It's also known as a self-balanced scooter, it handheld electrical devices traveling on two wheels are hoverboards. It dominated the industry around 2015 and since then has become more and more successful. A rider is balanced on a frame between these wheels, driven by battery-powered lithium-ion batteries.

8 0
3 years ago
An aircraft flies at sea level at a speed of 220 m/s. What is the highest pressure that can be acting on the surface of the airc
goldenfox [79]

Answer:

An aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²

Explanation:

Applying Bernoulli's equation, we determine the highest pressure on the aircraft.

P = \frac{1}{2} \rho V^2

where;

P is the highest pressure on the aircraft

\rho is the density of air = 1.204 kg/m³ at sea level temperature.

V is the velocity of the aircraft = 220 m/s

P = 0.5*1.204*(220)² = 29136.8 N/m²

Therefore, an aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²

6 0
3 years ago
Read 2 more answers
Other questions:
  • A 1000-kg aircraft going 25 m/s collides with a 1500-kg aircraft that is parked. They stick
    5·1 answer
  • Radon is a radioactive gas found below ground. If a sample of radon occupies 29 mL at 25 oC, what volume will it occupy at 500 K
    10·1 answer
  • Holes drilled several kilometers into Earth’s crust provide direct evidence about Earth’s interior in the form of
    6·2 answers
  • Suppose you wanted to hold up an electron against the force of gravity by the attraction of a fixed proton some distance above i
    6·1 answer
  • Two electrostatic point charges of +53.0 µC and +44.0 µC exert a repulsive force on each other of 166 N. What is the distance be
    7·1 answer
  • BRAINLIESTTTT!!!!! THIS IS DUE IN 5 MINUTES!<br>​
    9·1 answer
  • A disk has 128 tracks of 32 sectors each, on each surface of eight platters. The disk spins at 3600 RPM and takes 15 ms to move
    9·1 answer
  • A 100 N force causes an object to accelerate at 2 m/s2. What is the mass of the<br> object?
    13·1 answer
  • What is the likely identity of a metal if a sample has a mass of 63.5 g when measured in air and an apparent mass of 60.2 g when
    10·1 answer
  • A cabbie is trying to stop when he notices a fare is whistling them over. The
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!