Answer:
6.4 L
Explanation:
When all other variables are held constant, you can use Boyle's Law to find the missing volume:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the theoretical volume by plugging the given values into the equation and simplifying.
P₁ = 3.2 atm P₂ = 1.0 atm
V₁ = 2.0 L V₂ = ? L
P₁V₁ = P₂V₂ <----- Boyle's Law
(3.2 atm)(2.0 L) = (1.0 atm)V₂ <----- Insert values
6.4 = (1.0 atm)V₂ <----- Simplify left side
6.4 = V₂ <----- Divide both sides by 1.0
Answer:
Final Volume = 5.18 Liters
Explanation:
Initial Condition:
P1 = 789 mm Hg x (1/760) atm /mm Hg = 1.038 atm
T1 = 22° C = 273 + 22 = 295 K
V1 = 4.7 L
Final Condition:
P2 = 755 mm Hg x (1/760) atm /mm Hg = 0.99 atm
T2 = 37° C = 273 + 37 = 310 K
V2 = ?
Since, (P1 x V1) / T1 = (P2 x V2) / T2,
Therefore,
⇒ (1.038)(4.7) / 295 = (0.99)(V2) / 310
⇒ V2 = 5.18 L (Final Volume)
<span>Get a periodic table of elements. ...Find your element on the periodic table. ...Locate the element's atomic number. ...Determine the number of electrons. ...Look for the atomic mass of the element. ...<span>Subtract the atomic number from the atomic mass.</span></span>
The cnidarias life cycle has 2 life cycles polyp and medusa
Explanation:
nnbbnmkmknn bnnnbbtbbbbn' nn' t