Mean: the average. you have to add the values of the numbers and then divide by the amount of numbers there are. a common mistake to avoid is forgetting to divide the numbers at the end or subtracting them instead of adding.
mean: the middle number. you would first need to order the numbers from least to greatest. a common mistake to avoid is finding the middle number before ordering it from least to greatest
these two can also be commonly mistaken for one another because of the similar spelling.
The balanced equation between NaOH and H₂SO₄ is as follows
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
number of moles of NaOH moles reacted = molarity of NaOH x volume
number of NaOH moles = 0.08964 mol/L x 27.86 x 10⁻³ L = 2.497 x 10⁻³ mol
according to molar ratio of 2:1
2 mol of NaOH reacts with 1 mol of H₂SO₄
therefore 2.497 x 10⁻³ mol of NaOH reacts with - 1/2 x 2.497 x 10⁻³ mol of H₂SO₄
number of moles of H₂SO₄ reacted - 1.249 x 10⁻³ mol
Number of H₂SO₄ moles in 34.53 mL - 1.249 x 10⁻³ mol
number of H₂SO₄ moles in 1000 mL - 1.249 x 10⁻³ mol / 34.53 x 10⁻³ L = 0.03617 mol
molarity of H₂SO₄ is 0.03617 M
<h3><u>Answer;</u></h3>
Directly proportional
<h3><u>Explanation;</u></h3>
- <em><u>Concentration is one of the factors that determine the rate of a reaction. Reaction rates increases with increase in the concentration of the reactants, which means they are directly proportional.</u></em>
- An increase in the concentration of reactants produces more collisions and thus increasing the rate at which the reaction is taking place. Therefore, <u>Increasing the concentration of a reactant increases the frequency of collisions between reactants and will cause an increase in the rate of reaction.</u>
In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.
Hope This Helps! Have A Nice Day!
Answer:
a. 100.0 mL of 0.10 M NH₃ with 100.0 mL of 0.15 M NH₄Cl.
c. 50.0 mL of 0.15 M HF with 20.0 mL of 0.15 M NaOH.
Explanation:
A buffer system is formed in 1 of 2 ways:
- A weak acid and its conjugate base.
- A weak base and its conjugate acid.
Determine whether mixing each pair of the following results in a buffer.
a. 100.0 mL of 0.10 M NH₃ with 100.0 mL of 0.15 M NH₄Cl.
YES. NH₃ is a weak base and NH₄⁺ (from NH₄Cl ) is its conjugate base.
b. 50.0 mL of 0.10 M HCl with 35.0 mL of 0.150 M NaOH.
NO. HCl is a strong acid and NaOH is a strong base.
c. 50.0 mL of 0.15 M HF with 20.0 mL of 0.15 M NaOH.
YES. HF is a weak acid and it reacts with NaOH to form NaF, which contains F⁻ (its conjugate base).
d. 175.0 mL of 0.10 M NH₃ with 150.0 mL of 0.12 M NaOH.
NO. Both are bases.