Answer: B2H6 (g) + 3O2 (g) → B2O3 (s) + 3H2O (g) (ΔH = -2035 kJ/mol) 3H2O (g) → 3H2O (l) (ΔH = -132 kJ/mol) 3H2O (l) → 3H2 (g) + (3/2) O2 (g) (ΔH = 858 kJ/mol)
Explanation: ??
Answer:
Mass of sample in mg = 15,285 mg
Explanation:
Given:
Volume of urine sample = 15 ml
Density of sample = 1.019 g/ml
FInd:
Mass of sample in mg
Computation:
Mass = density x volume
Mass of sample in mg = Volume of urine sample x Density of sample
Mass of sample in mg = 1.019 x 15
Mass of sample in mg = 15.285 gram
Mass of sample in mg = 15.285 x 1,000
Mass of sample in mg = 15,285 mg
Answer: C. High surface tension
Explanation:
Water has high specific heat as it require high heat to raise the temperature of 1 g of water through
.
Surface tension is the net downward force acting on the surface of liquids due to the cohesive nature of liquids.
Water molecules are bonded by strong hydrogen bonding between the hydrogen atom and the electronegative oxygen atom making it polar. Thus water molecules present on the surface are strongly attracted by the molecules present below the surface and thus act as a stretched membrane.
The surface acquires a minimum surface are and thus acquire a spherical shape.
The volume of SO2 produced at 325k is calculated as below
calculate the moles of SO2 produced which is calculated as follows
write the reacting equation
K2SO3 +2 HCl = 2KCl +H2O+ SO2
find the moles of HCl used
=mass/molar mass = 15g/ 36.5 g/mol =0.411 moles
by use of mole ratio between HCl to SO2 which is 2:1 the moles of SO2 is therefore = 0.411 /2 =0.206 moles of SO2
use the idea gas equation to calculate the volume SO2
that is V=nRT/P
where n=0.206 moles
R(gas constant) = 0.082 L.atm/ mol.k
T=325 K
P=1.35 atm
V=(0.206 moles x 0.082 L.atm/mol.k x325 k)/1.35 atm = 4.07 L of SO2
The correct answer is option 2. A 0.8 M aqueous solution of NaCl has a higher boiling point and a lower freezing point than a 0.1 M aqueous solution of NaCl. This is explained by the colligative properties of solutions. For the two properties mentioned, the equation for the calculation of the depression and the elevation is expressed as: ΔT = -Km and <span>ΔT = Km, respectively. As we can see, concentration and the change in the property has a direct relationship.</span>