PH is defined as the negative log of Hydrogen ion concentration. Mathematically we can write this as:
![pH=-log[H^{+}]=-log[H_{3}O]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%7B%2B%7D%5D%3D-log%5BH_%7B3%7DO%5D%20%20)
We are given the concentration of

. Using the value in formula, we get:
Therefore, the pH of the solution will be 3.745
A general equation for a combustion reaction would be expressed as follows:
CxHy + (x+y/2)O2 = xCO2 + y/2H2O
Propane would obviously would only have carbon and hydrogen in its structure. Assuming a complete combustion, all of the carbon atoms would go to carbon dioxide and all of the hydrogen atoms to water. To determine the empirical, we determine the number of carbon and hydrogen atoms present.
moles C = 2.461 g CO2 ( 1 mol / 44.01 g ) ( 1 mol C / 1 mol CO2 ) = 0.06 mol C
moles H = 1.442 g H2O ( 1 mol / 18.02 g ) ( 2 mol H / 1 mol H ) = 0.16 mol H
Then, we divide the smallest amount to the each mole of the atoms. We do as follows:
C = 0.06 / 0.06 = 1
H = 0.16 / 0.06 = 2.67
Then we multiply a number in order to obtain a whole number ratio between the atoms.
1 CH2.67
2 C2H5.34
3 C3H8 <-------- empirical formula
Answer:
Prompt Neutrons
Explanation:
Principle. Using uranium-235 as an example, this nucleus absorbs thermal neutrons, and the immediate mass products of a fission event are two large fission fragments, which are remnants of the formed uranium-236 nucleus. These fragments emit two or three free neutrons (2.5 on average), called prompt neutrons.
<span>Propane is C3H8
The balanced equation is:
C3H8 + 5 O2 --> 3 CO2 + 4 H2O
From the balanced equation you can see that for each mole of C3H8 you obtain 4 moles of H2O.
moles H2O = 5.0 moles C3H8(4 moles H2O/1 mole C3H8) = 20 moles H2O formed
Use Avogadro's number to find the number of molecules.
molecules H2O = 20 moles H2O(6.02 x 10^23 molecules/1 mole) = 1.20 x 10^25 H2O molecules</span><span>
</span>