1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
3 years ago
11

Calculate the pH of each of the following solutions: (a) 0.1000M Propanoic acid (HC3H5O2, Ka= 1.3x10-5 ) (b) 0.1000M sodium prop

anoate (Na C3H5O2) (c) 0.1000M HC3H5O2 and 0.1000M (Na C3H5O2
Chemistry
2 answers:
Vesnalui [34]3 years ago
5 0

Answer:

(a) 0.1000 M Propanoic acid, Ka=1.3x10-5 pH=2.94

(b) 0.1000M sodium propanoate, pH=8.94

(c) 0.1000M HC3H5O2 and 0.100M NaC3H5O2 pH=4.89

Explanation:

(a) Propanoic acid is a weak acid, the general equation is:

HC_{3} H_{5}O_{2}⇄H^{+}+C_{3}H_{5} O_{2}^{-}

At the beginning of the reaction, the initial concentration are:

HC3H5O2=0.1

H+=0

C3H5O2=0

After the beginning of the reaction, the concentrations change:

HC3H5O2= -x

H+= x

C3H5O2= x

When the reaction reaches the equilibrium, the final concentrations will be the initial concentrations minus the change concentrations:

HC3H5O2= 0.1 -x (1)

H+= x (2)

C3H5O2= x (3)

We need the equation of acid ionization constant:

K_{a}___HC_3H_5O_2=\frac{[H^+][C_3H_5O_2]^-}{[HC_3H_5O_2]} (4)

We should replace the concentrations in the equation (4) with the concentrations in the equilibrium. Eq (1), (2) and (3)

Ka=\frac{x*x}{0.1000-x} (5)

As this acid dissociates in very low concentrations, we use the approximation x = 0  

Therefore we assume that 0.1 - x will be approximately equal to 0.1

Ka=\frac{x*x}{0.1}

Ka= \frac{x^2}{0.1}\\Ka*0.1000= {x^2}\\x= \sqrt{Ka*0.1} \\x= \sqrt{1.3x10x^{-5} *0.1} \\x=\sqrt{1,3x10x^{-6} } \\x= 1.14x10x^{-3}

We found x, so we know [H+]

The equation to find the pH is:

pH= -Log [H^{+} ]\\pH=-Log(1.14x10^{-3} )\\pH=2.94

(b) Sodium propanoate is a salt. The sodium propanoate comes from a strong base (NaOH) and a weak acid HC3H5O2

The hydrolysis reaction for the anion is:

C_3H_5O_2^- + H_2O⇄HC_3H_5O_2 + OH^- (6)

In this chemical equation the water donates hydrogen so it behaves like a base . We need basic ionization constant (K_{b_C_3H_5O_2^-})

To find Kb, we have the follow equation:

Kb=\frac{Kw}{Ka} (7)

We know the water constant (Kw=1x10-14) and we have the acid ionization constant if Propanoic acid (Ka= 1.3x10-5)

Using the equation (7):

Kb=\frac{1x10^{-14}}{1.3x10^{-5}}

Kb=7.69x10-10

In the hydrolysis reaction (6) , the initial concentrations are:

C3H5O2= 0.1

OH- = 0

HC3H5O2 = 0

After the beginning of the reaction, the concentrations change:

C3H5O2= -x

OH- = x

HC3H5O2 = x

When the reaction reaches the equilibrium, the final concentrations are:

C3H5O2= 0.1 - x (8)

OH- = x (9)

HC3H5O2 = x (10)

We need the equation of basic ionization constant, this equation is:

Kb=\frac{[OH^-][HC_3H_5O_2]}{[C_3H_5O_2]} (11)

We should replace the concentrations in the equation (11) with the concentrations in the equilibrium

Kb=\frac{x*x}{0.1-x} (12)

As this salt dissociates in very low concentrations, we use the approximation x = 0  

Therefore we assume that 0.1 - x will be approximately equal to 0.1

so the solution of the equation (12) is:

Kb=\frac{x*x}{0.1}

Kb= \frac{x^2}{0.1}\\Kb*0.1= {x^2}\\x= \sqrt{Kb*0.1} \\x= \sqrt{7.69x10^{-10} *0.1} \\x= 8.77x10x^{-6}[/tex]

We found x, so we know OH-

The equation to find the pOH is:

pOH= -Log [OH-]

pOH= -Log(8.77x10-6)

pOH=5.06

To find the pH we know:

pH + pOH = 14 (13)

pH = 8.94

(c) We have Sodium propanoate and propanoic acid to 0.1M

We need 2 chemical reactions, when the salt dissociates:

NaC_3H_5O_2→Na^{+} + C_3H_5O_2^{-} (14)

The initial concentrations are:

NaC3H5O2=0.1

Na+=0

C3H5O2=0

At the end of the reaction (14), the concentrations are:

NaC3H5O2= 0 (15)

Na+= 0.1 (16)

C3H5O2= 0.1 (17)

The second chemical reaction is:

HC_{3} H_{5}O_{2}⇄H^{+}+C_{3}H_{5} O_{2}^{-} (18)

At the beginning of the reaction, the initial concentration are:

HC3H5O2=0.1

H+=0

C3H5O2=0.1 (This is the final concentration when the salt was dissociated eq. (17))

After the beginning of the reaction, the concentrations change:

HC3H5O2= -x

H+= x

C3H5O2= x

When the reaction reaches the equilibrium, the final concentrations are:

HC3H5O2=0.1 - x

H+= x

C3H5O2=0.1 + x

We need the equation of acid ionization constant, this equation is:

K_{a}___HC_3H_5O_2=\frac{[H^+][C_3H_5O_2]^-}{[HC_3H_5O_2]}

We should replace the concentrations in the last equation with the concentrations in the equilibrium.

Ka=\frac{x*(0.1+x)}{0.1-x} (19)

As this acid dissociates in very low concentrations, we use the approximation x = 0  

Therefore we assume that 0.1 - x will be approximately equal to 0.1

Ka=\frac{x*(0.1+x)}{0.1}

Ka*(0.1)=x(0.1+x)\\Ka*0.1=0.1x+x^2\\Ka*0.1-(0.1*x)-x^2=0\\

1.3x10^{-6}-(0.1*x)-x^2=0 (20)

Equation 20 is solved using the quadratic equation:

x=\frac{-b+/-\sqrt{b^2-4ac} }{2a} (21)

Using the equation (21) we know the coefficients are:

a= -1

b= -0.1000

c= 1.3x10-6

The solution to the equation (21):

x1= - 0.1

x2= 1.3x10-5

We know the concentrations should be positives so the correct answer is 1.3x10-5

Now we know [H+]

The equation to find the ph is:

pH= -Log [H^{+} ]\\pH=-Log(1.3x10^{-5} )\\pH=4.89

jek_recluse [69]3 years ago
3 0

(a) The pH of 0.1000 M propanoic acid (HC3H5O2) is 2.9.

(b) The pH of 0.1000 M sodium propanoate (NaC3H5O2) is 8.9.

(c) The pH of 0.1000 M propanoic acid (HC3H5O2) and 0.1000 M sodium propanoate (NaC3H5O2) is 4.9.

<h3>Further explanation:</h3>

(a)

Given information:

The value of acid ionization constant for propanoic acid is  1.3 x 10^{-5} .

The initial concentration of propanoic acid is  .

To calculate:

The pH of 0.1000 M propanoic acid solution.

Solution:

Propanoic acid  is a weak acid. It ionizes partially in water as follows:

 

The expression for acid dissociation constant is,

                                                            …… (1)

Here,

 is ionization constant of propanoic acid.

is the equilibrium concentration of propanoate ion.

is the equilibrium concentration of hydronium ion.

 is the equilibrium concentration of propanoic acid.

ICE table (1):

 

Refer ICE table (1),

 

Substitute the values form the ICE table (1) in equation (1).

 

The approximation x is very small is valid. Therefore, the value of x can be neglected. Above equation can be modified as,

 

Rearrange above equation for x.

                                                                                                           …… (2)

Substitute   for   in equation (2) to calculate the value of x.

 

Therefore, from the ICE table (1) the concentration of hydronium ion is,

 .

The negative logarithm of hydronium ion concentration is defined as the pH of the solution. Mathematically,

                                                                                                               …… (3)

Substitute    for    in equation (3) to calculate the pH of the solution.

 

(b)

Given information:

The value of acid ionization constant for propanoic acid is  .

The initial concentration of sodium propanoate is  .

To calculate:

The pH of 0.1000 M sodium propanoate solution.

Solution:

Sodium propanoate  is conjugate base of weak propanoic acid. It undergoes hydrolysis in water to yield hydroxide ion in the solution as follows:

                                                        …… (4)

Propanoic acid  is a weak acid. It ionizes partially in water as follows:

                                                       …… (5)

Dissociation reaction for water is written as follows:

                                                                                       …… (6)

From equation (4), (5), and (6) the relationship between   and   is,

                                                                                                                              …… (7)

Substitute   for   and   for   in equation (7).

 

ICE table (2):

 

The expression for base dissociation constant is,

                                                                                                     …… (8)

Here,

is base ionization constant.

is the equilibrium concentration of propanoate ion.

is the equilibrium concentration of hydroxide ion.

 is the equilibrium concentration of propanoic acid.

From the ICE table (2),

 

Substitute the values form the ICE table (2) in equation (8).

 

The approximation y is very small is valid. Therefore, the value of y can be neglected. Above equation can be modified as,

 

Rearrange above equation for y.

                                                                                                           …… (9)

Substitute   for   in equation (9) to calculate the value of y.

 

Therefore, from the ICE table (2) the concentration of hydroxide ion is,

 

The negative logarithm of hydroxide ion concentration is defined as pOH of the solution. Mathematically,

                                                                                                           …… (10)

Substitute    for    in equation (10) to calculate pOH of the solution.

 

The relation between pH and pOH is as follows:

                                                                                                                   …… (11)

Substitute 5.057 for pOH in equation (11) to calculate the pH of the solution.

 

(c)

Given information:

The value of acid ionization constant for propanoic acid is  .

The initial concentration of sodium propanoate is  .

The initial concentration of sodium propanoate is  .

To calculate:

The pH of 0.1000 M sodium propanoate and 0.1000 M propanoic acid solution.

Solution:

Propanoic acid is a weak acid, and sodium propanoate is salt of the conjugate base of propanoic acid. Thus, propanoic acid and sodium propanoate will form a buffer system.

The pH of the buffer solution can be determined with the help of the Henderson-Hasselbalch equation. Mathematically,

 

For propanoic acid and sodium propanoate buffer system, the Henderson-Hasselbalch equation can be modified as,

                                                                                               …… (12)

The negative logarithm of acid ionization constant is equal to  .

                                                                                                                …… (13)

Substitute   for  in equation (13).

 

Substitute    for  ,   for   and 4.9 for    in equation (12).

 

Learn more:

1. About Henderson-Hasselbalch equation brainly.com/question/12999557

2. Learn more about how to calculate moles of the base in given volume brainly.com/question/4283309

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Ionic equilibria

Keywords: ionic equilibrium, propanoic acid, sodium propanoate, ionization constant, weak acid, conjugate base, equilibrium concentration, hydronium ion, hydroxide ion, pH, pOH, ICE table, negative logarithm, buffer solution, Henderson-Hasselbalch equation, 0.1000 M, 4.9, 8.9, 2.9.

You might be interested in
What is cell theory and how is it applied to all living organisms?
ch4aika [34]
Description in biology, cell theory is the historic scientific theory, now universally accepted, that living organisms are made up of cells, that they are the basic structural/organizational unit of all organisms, and that all cells come from pre-existing cells.
4 0
3 years ago
We dissolve 93 grams of sodium sulfate (Na2SO4) in 20 grams of water. What is the percent by mass of sodium sulfate in this solu
dlinn [17]
It should be for the total solution of 93 plus 20 grams which is 113 grams so 93 divided by 113 grams comes to 82.3% sodium sulfate and this can be checked by multiplying 113 grams by 0.823 which results in 93 grams of sodium sulphate. 
4 0
3 years ago
What is the empirical formula of a compound that is 24.42 % calcium, 17.07 % nitrogen, and 58.5% oxygen?
REY [17]

Answer:

CaN_{2} O_{6}

Explanation:

When calculating an empirical formula from percentages, assume you have a 100g sample. This allows you to convert the percentages directly to grams, because X % of 100g is X grams.

So:

24.42 % = 24.42 g Ca, 17.07% = 17.07g N, 58.5% = 58.5g O

The next step is to divide each mass by their molar mass to convert your grams to moles.

24.42/40.08 = 0.6092 mol

17.07/14.01 = 1.218 mol

58.85/15.99 = 3.680 mol

Then you will divide all of your mol values by the SMALLEST number of moles. This gives you whole numbers that are the mole ratio (subcripts) of the empircal formula.

0.6092 mol/0.6092 mol = 1

1.218 mol/0.6092 mol = 2

3.680 mol/0.6092 mol = 6

So the empirical formula is CaN_{2} O_{6}

5 0
2 years ago
How much iron is present in 7.59 g of iron(iii) oxide? answer in units of g?
Verdich [7]
You need the unit of g however you must convert to moles before you can use the mole ratio to find the moles of iron, you used the molar mass of iron to find the grams of iron. since F e 2 o 3 

4 0
3 years ago
How many atoms are present in 65.39 g of zinc?
klio [65]
<span>Avogadro's number represents the number of units in one mole of any substance. This has the value of 6.022 x 10^23 units / mole. This number can be used to convert the number of atoms or molecules into number of moles.

 65.39 g Zn ( 1 mol / 65.38 g ) ( </span>6.022 x 10^23 atoms / 1 mol ) = 6.023x10^23 atoms Zn
3 0
3 years ago
Other questions:
  • What is the mass number, symbol, and charge of an atom that contains 19 protons, 20 neutrons and 19 electrons?
    10·1 answer
  • Which generalized equation represents a single displacement reaction?
    5·1 answer
  • _________based on religious beliefs
    6·1 answer
  • Bromine has an atomic number of 35. How many protons are in an atom of bromine? 17 18 35 52
    5·1 answer
  • Jill is doing an experiment on the movement of pill bugs. She will place the pill bugs on flat surfaces covered with diffirent m
    11·1 answer
  • Pleas help fill in blank
    13·1 answer
  • What are the names of the products in the chemical equation shown below
    9·2 answers
  • Please help me with this in the picture I need 8 thing wrong and 8 what should they do right
    12·1 answer
  • DNA<br> What organism is often used to study mutations
    11·1 answer
  • What was the control group for this experiment?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!