The student who did the most work is student 2 with 2500 Joules.
<u>Given the following data:</u>
To determine which of the students did the most work:
Mathematically, the work done by an object is given by the formula;

<u>For </u><u>student 1</u><u>:</u>

Work done = 600 Joules
<u>For </u><u>student 2</u><u>:</u>

Work done = 2500 Joules.
Therefore, the student who did the most work is student 2 with 2500 Joules.
Read more: Read more: brainly.com/question/13818347
Answer:
<h2>4.6 m/s²</h2>
Explanation:
The acceleration of an object given it's velocity and time taken can be found by using the formula
<h3>

</h3>
where
v is the final velocity
u is the initial velocity
t is the time taken
a is the acceleration
Since the body is from rest u = 0
From the question we have

We have the final answer as
<h3>4.6 m/s²</h3>
Hope this helps you
Density = (mass) divided by (volume)
We know the mass (2.5 g). We need to find the volume.
The penny is a very short cylinder.
The volume of a cylinder is (π · radius² · height).
The penny's radius is 1/2 of its diameter = 9.775 mm.
The 'height' of the cylinder is the penny's thickness = 1.55 mm.
Volume = (π) (9.775 mm)² (1.55 mm)
= (π) (95.55 mm²) (1.55 mm)
= (π) (148.1 mm³)
= 465.3 mm³
We know the volume now. So we could state the density of the penny,
but nobody will understand what we have. Here it is:
mass/volume = 2.5 g / 465.3 mm³ = 0.0054 g/mm³ .
Nobody every talks about density in units of ' gram/(millimeter)³ ' .
It's always ' gram / (centimeter)³ '.
So we have to convert our number for the volume.
(0.0054 g/mm³) x (10 mm / cm)³
= (0.0054 x 1,000) g/cm³
= 5.37 g/cm³ .
This isn't actually very close to what the US mint says for the density
of a penny, but it's in a much better ball park than 0.0054 was.
Answer:
Acceleration
Explanation:
acceleration because it has magnitude but no direction
Answer: Scientists found evidence of Earths magnetic field reversal in rocks on the ocean floor at plate boundaries. These rocks have alternating polarity due to magnetization that occurred during their cooling period. Using radio metric dating, scientist estimate that reversals occur approximately every several hundred thousand years.
Explanation: