1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks [24]
3 years ago
14

A real spring does not oscillate forever. Instead, it eventually comes to a stop. Does this violate the law of conservation of e

nergy? Explain why or why not.
Physics
1 answer:
ss7ja [257]3 years ago
5 0
It does not violate the law of conservation of energy. The oscillation stops when the energy is lost and the energy is lost because it becomes heat that is created by the air resistance and many other forces found in the surrounding of the oscillating spring.
You might be interested in
What does this mean Atoms and elements are the basic back bone of the universe .
il63 [147K]
It means every thing is made out of Atoms and some things are element componds so elements are the "backbone" of the compounds.
8 0
3 years ago
Block A can slide relative to block B which, in turn, can slide on a perfectly smooth horizontal plane. If the initial velocity
Anna11 [10]

Answer:

the final velocity of the two blocks is v = \frac{mv_o}{m+M}

the distance that A slides relative to B is S = \frac{v_o^2M}{2 \mu g (M+m)}  

Explanation:

From the diagram below;

acceleration of A relative to B is : a = - ( \mu g  + \frac{ \mu mg}{M})

where

v = u + at

0 = v_o + ( - \mu g - \frac{\mu m g }{M})t

Making t the subject of the formula; we have:

t = \frac{v_o M}{(\mu g )(M+m)}

v^2 = u^2 +2 as\\\\0^2 = v_o^2 - 2 (\mu g ) (\frac{M+m}{M})S\\\\

S = \frac{v_o^2M}{2 \mu g (M+m)}  which implies the distance that A slides relative to B.

The final velocities of the two blocks can be determined as follows:

v = u + at

v = v_o - \mu g \frac{v_oM}{\mu g (M+m)}\\\\v = \frac{\mu g mv_o}{m+M}\\\\

v = \frac{mv_o}{m+M}

Thus, the final velocity of the two blocks is v = \frac{mv_o}{m+M}

4 0
3 years ago
According to Coulomb’s Law, the force between two charged objects is related to _____.
Natasha_Volkova [10]

Answer:

A.) the inverse of the square of the distance separating them

Explanation:

Coulombs law states that "the force of attraction between two charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them."

Mathematically, F = kq1q2/r²

Where q1 and q2 are the charges

r is the distance between the charges.

According to the law, the force between two charged objects is related to the inverse of the square of the distance separating them.

5 0
3 years ago
An intravenous (IV) system is supplying saline solution to a patient at the rate of 0.06 cm3/s through a needle of radius 0.2 mm
horsena [70]

Answer:

Pressure applied to the needle is 7528 Pa

Explanation:

As we know by poiseuille's law of flow of liquid through a cylindrical pipe

the rate of flow through the pipe is given as

Q = \frac{\Delta P \pi r^4}{8\eta L}

now we know that

Q = 0.06 \times 10^{-6} m^3/s

radius = 0.2 mm

Length = 6.32 cm

\eta = 1\times 10^{-3} Pa s

now we have

6 \times 10^{-8} = \frac{\Delta P \pi (0.2 \times 10^{-3})^4}{8(1 \times 10^{-3})6.32 \times 10^{-2}}

3.03 \times 10^{-11} = \Delta P 5.02 \times 10^{-15}

\Delta P = 6028 Pa

now we have

P - 1500 = 6028 Pa

P = 7528 Pa

8 0
3 years ago
A particle of mass 4.00 kg is attached to a spring with a force constant of 100 N/m. It is oscillating on a frictionless, horizo
zloy xaker [14]

Solution :

Given :

Mass attached to the spring = 4 kg

Mass dropped = 6 kg

Force constant = 100 N/m

Initial amplitude = 2 m

Therefore,

a). $v_{initial} = A w$

          $= 2 \times \sqrt{\frac{100}{4}}$

          = 10 m/s

Final velocity, v at equilibrium position, v = 5 m/s

Now, $\frac{1}{2}(4+4)5^2 = \frac{1}{2} kA'$

A' = amplitude = 1.4142 m

b). $T=2 \pi \sqrt{\frac{m}{k}}$

    m' = 2m

    Hence, $T'=\sqrt2 T$

c). $\frac{\frac{1}{2}(4+4)5^2 + \frac{1}{2}\times 4 \times 10^2}{\frac{1}{2} \times 4 \times 10^2}$

  $=\frac{1}{2}$

Therefore, factor $=\frac{1}{2}$

Thus, the energy will change half times as the result of the collision.

7 0
3 years ago
Other questions:
  • Why do we experience a high tide twice a day?
    9·1 answer
  • Stars that become black holes have more __________ than stars that become neutron stars
    14·2 answers
  • If a power utility were able to replace an existing 500 kV transmission line with one operating at 1 MV, it would change the amo
    9·1 answer
  • HURRY ITS TIMED
    10·2 answers
  • Infer whether a circuit breaker should be connected in parallel to the circuit that it is protecting.
    13·1 answer
  • According to the FITT Principle you should exercise how many days ?
    11·1 answer
  • Which process of ammonia processing will Eden use? Eden owns a fertilizer manufacturing factory. Ammonia is used to prepare nitr
    5·2 answers
  • A high school physics teacher also happens to be the junior hockey team coach. During a break at practice, the coach asks two pl
    11·1 answer
  • Which of the following statements is true?
    5·1 answer
  • How can you find the area of a regular room?​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!