The molarity of the diluted solution is 0.32 M
Considering the question given above, the following data were obtained:
Volume of stock solution (V₁) = 500 mL
Molarity of stock solution (M₁) = 2.1 M
Volume of diluted solution (V₂) = 3.25 L = 3.25 × 1000 = 3250 mL
<h3>Molarity of diluted solution (M₂) =....? </h3>
The molarity of the diluted solution can be obtained as follow:
<h3>M₁V₁ = M₂V₂</h3>
2.1 × 500 = M₂ × 3250
1050 = M₂ × 3250
<h3>Divide both side by 3250</h3><h3 />
M₂ = 1050 / 3250
<h3>M₂ = 0.32 M</h3>
Therefore, the molarity of the diluted solution is 0.32 M
Learn more: brainly.com/question/22325751
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
Explanation:
Given equation;
NaC₂H₃O₂ + Fe₂O₃ → Fe(C₂H₃O₂)₃ + Na₂O
To find the coefficient that will balance this we equation, let us set up simple mathematical algebraic expressions that we can readily solve.
Let us have at the back of our mind that, in every chemical reaction, the number of atom is usually conserved.
aNaC₂H₃O₂ + bFe₂O₃ → cFe(C₂H₃O₂)₃ + dNa₂O
a, b, c and d are the coefficients that will balance the equation.
conserving Na; a = 2d
C: 2a = 6c
H: 3a = 9c
O; 2a + 3b = 6c + d
Fe: 2b = c
let a = 1
solving:
2a = 6c
2(1) = 6c
c = 
2b = c
b =
= 
d = 2a + 3b - 6c = 2(1 ) + (3 x
) - (6 x
) = 
Now multiply through by 6
a = 6, b = 1, c = 2 and d = 3
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
learn more:
Balanced equation brainly.com/question/9325293
#learnwithBrainly
Answer:
1. First one is true : as per periodic table down the group , the elements has increasing order of shell & with that the London dispersion forces brings the inter-molecules close together and bromine converted into liquid .
2. second one is False because carbon-carbon bonds are not weak bonds they form mutual covalent bonds which are stronger bonds and cannot be easily disrupted .
3. A single carbon atom has the valency of 4 so it can be bonded with four hydrogen atom at the same time .
Explanation:
Answer:
It is basically a way of telling you how to solve for different variables in the equation d=m/v
Explanation: