<span>density = mass / volume
given the quotient , we have density and mass, volume can be easily calculated as:
volume = mass / p =15.5 g / 0.789 g/cm^3
=~ 20 cm^3 (dimension ally constant)</span>
Answer:
<h2>59.1 m</h2>
Explanation:
The height of the object can be found by using the formula

where
p is the potential energy
m is the mass
h is the height
g is the acceleration due to gravity which is 10 m/s²
From the question we have

We have the final answer as
<h3>59.1 m</h3>
Hope this helps you
Answer:
idk right now but i will let you know when i get the answer! Ok?
Answer:
Option D. KBr < KCl < NaCl
Explanation:
We'll begin by calculating the number of mole of each sample.
This can be obtained as follow:
For NaCl:
Mass = 1 g
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mole of NaCl =?
Mole = mass /Molar mass
Mole of NaCl = 1/58.5
Mole of NaCl = 0.0171 mole
For Kbr:
Mass = 1 g
Molar mass of KBr = 39 + 80 = 119 g/mol
Mole of KBr =?
Mole = mass /Molar mass
Mole of KBr = 1/119
Mole of KBr = 0.0084 mole
For KCl:
Mass = 1 g
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Mole of KCl =?
Mole = mass /Molar mass
Mole of KCl = 1/74.5
Mole of KCl = 0.0134 mole
Summary
Sample >>>>>>>> Number of mole
NaCl >>>>>>>>>> 0.0171
KBr >>>>>>>>>>> 0.0084
KCl >>>>>>>>>>> 0.0134
Arranging the number of mole of the sampl in increasing order, we have:
KBr < KCl < NaCl