Answer:
The interquartile range is the difference between the highest and lowest values in the middle of a data set.
Step-by-step explanation:
The range is the difference between the maximum and minimum value, hence, it cannot be greater than the maximum value, which is the greatest value in a dataset, the highest value a range could have being equal to the maximum value when the minimum vlaue of the dataset is equal to 0.
The mean is the average value of a dataset, hence, it cannot be greater than the maximum value.
The interquartile range is the middle 50% or half of a dataset and not the difference between the highest and lowest middle values in the middle. It is obtained by taking the difference of the upper and lower QUARTILE.
Answer:
It's B.9
Step-by-step explanation:
Because
11+9=20
20+9= 29
29+9= 38
The common difference is positive because the arithmetic sequence is increasing.
Initial velocity (u) = 0m/s
Final velocity (v) = 20m/s
Time (t) = 10 s
Acceleration (a)
= (v - u)/t
= [(20m/s) - (0m/s)]/10s
= (20m/s)/10s
= (20m/s²)/10
=> 2m/s²