Answer:
No. Neither the USGS nor any other scientists have ever predicted a major earthquake. We do not know how, and we do not expect to know how any time in the foreseeable future.
1st Law: Objects that are in motion tend to stay in motion. This motion can change with external forces.
<span>If you were to stop pedaling on bike while in motion, you will notice that you will keep moving. This is because a moving body (you) has inertia. If there wasn't any friction between the tires and the ground, between the axles and wheel, any air resistance, or any other force that acts against you, then you could be coasting indefinitely! </span>
<span>2nd Law: Force is equal to the mass times acceleration. </span>
<span>When you pedal, you are applying a force onto the pedal. This force is then translated through tension to apply torque onto the wheel. Turning the wheel will make you accelerate in the lateral direction. </span>
<span>3rd Law: For every action, there is an equal and opposite reaction. </span>
<span>Without this, you could pedal and pedal, but you will be not go anywhere! It is essentially the friction between the tires and the ground that propels you forward. If the ground did not apply to the tire the same amount of force that the tire was applying to the ground, the tire would not "catch" and no friction would be applied. And if there was no third law, the weight of you and your bike would "sink" into the ground because the ground would not be applying a normal force back onto you.
hope this helps and if you have any questions just hmu and ask :)</span>
Answer:
<h3>25km/hr</h3>
Explanation:
Velocity is the change in displacement of a body with respect to time.
Velocity - Displacement/time
Given
displacement = 76km
Time = 3hours
Substitute the given parameters into the formula;
Velocity = 75km/3hrs
Velocity = 25km/hr
Hence the velocity of the narwhal is 25km/hr
Correct question:
Consider the motion of a 4.00-kg particle that moves with potential energy given by

a) Suppose the particle is moving with a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m?
b) What is the magnitude of the force on the 4.00-kg particle when it is located at x = 5.00 m?
Answer:
a) 3.33 m/s
b) 0.016 N
Explanation:
a) given:
V = 3.00 m/s
x1 = 1.00 m
x = 5.00

At x = 1.00 m

= 4J
Kinetic energy = (1/2)mv²

= 18J
Total energy will be =
4J + 18J = 22J
At x = 5

= -0.24J
Kinetic energy =

= 2Vf²
Total energy =
2Vf² - 0.024
Using conservation of energy,
Initial total energy = final total energy
22 = 2Vf² - 0.24
Vf² = (22+0.24) / 2

= 3.33 m/s
b) magnitude of force when x = 5.0m



At x = 5.0 m


= 0.016N