Blood flows through the major artery at 1 m/s for 0.5 m then at a 0.6 m/s over a distance of another 0.5 m through the small artery the average speed of blood is 0.4 m/s.
We know that average speed =
=0.4 m/s
Average speed is an important component in determining how long it takes to finish a journey. Average speed is simply a technique that assists us in calculating trip time and distance. It is obvious that the speed changes throughout the travel, making determining the average speed even more critical.
There are various methods for determining an object's or vehicle's average speed.
It is most desired when the speed of the object remains constant during the voyage, i.e. does not rise or decrease.
The approach for determining the average Speed is to divide. Divide the distance the vehicle travels by the time it travels to get the result.
Learn more about average speed brainly.com/question/12322912
#SPJ9
Answer: A, protons
Why: it just is
Explanation:
Archimedes' principle states that the upward buoyant force which is exerted on body when immersed whether fully submerged or partially in the fluid is equal to weight of fluid which body displaces and this force acts in upward direction at center of mass of displaced fluid.
Thus,
<u>Weight of the displaced fluid = Weight of the object - Weight of object in fluid.</u>
Answer:
t = 0.2845Nm (rounded to 4 decimal places)
Explanation:
The disk rotates at a distance of an arc length of 28cm
Arc length = radius × central angle × π/180
28cm = 10cm × central angle × π/180
Central angle =
× 180/π ≈ 160.4°
Torque (t) = rFsin(central angle) , where F is the applied force
Radius in meters = 10/100 = 0.1m
t = 0.1m × 16N × sin160.4°
t = 0.2845Nm (rounded to 4 decimal places)
Answer:
The answer is β=0,85 rads
Explanation:
As the ladder is leaning against the building, we can imagine there´s a triangle where 20ft is the hypotenuse and 15ft is the maximum vertical distance between the ladder and the ground, it means, the leg opposite to β which is the angle we need
Let β(betha) be the angle between the ladder and the ground
We also know that 
In this case we will need to find β, this way:

Then β=48,6°
We also have that 2πrads is equal to 360°, in this way we find how much β is in radians:

then we find β=0,85rads