Answer:
1.2x10⁻⁵M = Concentration of the product released
Explanation:
Lambert-Beer's law states the absorbance of a solution is directly proportional to its concentration. The equation is:
A = E*b*C
<em>Where A is the absotbance of the solution: 0.216</em>
<em>E is the extinction coefficient = 18000M⁻¹cm⁻¹</em>
<em>b is patelength = 1cm</em>
<em>C is concentration of the solution</em>
<em />
Replacing:
0.216 = 18000M⁻¹cm⁻¹*1cm*C
<h3>1.2x10⁻⁵M = Concentration of the product released</h3>
Umm I think it might be a b c in order?
During the riding of the steep mountain, the body needs more energy because going up consume more energy and oxygen due to additional effect of gravity on your momentum.
<h3>What is the effect of cycling?</h3>
Cycling is a good exercise as swimming, while cycling, happy hormones are released like dopamine and serotonin.
The primary forces that work while cycling are gravity, friction, rolling resistance, and air resistance.
Thus, During the riding of the steep mountain, the bod needs more energy because going up consume more energy and oxygen due to additional effect of gravity on your momentum.
Learn more about effect of cycling
brainly.com/question/26055886
#SPJ1
Lets get this straight:-
Protons → Positive charge, found in nucleus, heavy
Now, the only one we see that seems to be correct is A) positive charge, heavy, found in the nucleus of an atom
Answer:
The molality of the solution is 0.3716 mol/kg
The number of moles of solute is 0.0157 mol
The molecular weight of the solute is 129.30 g/mol
The molar mass of the solute is 129.32 g/mol
Explanation:
m (molality of the solution) = ∆T/Kf = (43.17 - 40.32)/7.67 = 0.3716 mol/kg
Number of moles of solute = molality × mass of solvent in kilogram = 0.3716 × 0.04219 = 0.0157 mol
Molecular weight of solute = mass/number of moles = 2.03/0.0157 = 129.3 g/mol
When Kf = 7.66 °C.kg/mol
Molar mass = 2.03 ÷ (2.85/7.66 × 0.04219) = 129.32 g/mol