<span>In the question ' which of the following most likely require intermolecular force', options A and C given are definitely not the correct answers. Among the items listed in the questions, the one that will most likely required an intermolecular force is a rock maintaing its solid shape. Thus, the correct option is B. Intermolecular forces are forces which maintain chemical interactions between molecules of a particular susbstance and other types of paticles that may be present in the substance. Rocks are made up of differet particles and their structures are held together by different types of intermolecular forces depending on the types of particles present in the rock. Intermolecular forces can only occur among molecules and other particles in a compound that is why the other two options are wrong. Intermolecular force can either be attractive or repulsive. Attraction occurs between molecules of opposite charges, that is, positive and negative charges while repulsion occurs between particles of like charges, for intstance, between positive and positive charges. The Intermolecular forces that exist in a compound maintaings the integrity of the structure of that compound. Intermolecular forces in compounds exist in different forms, we have electrovalent bonds, covalent bonds, hydrogen bond, vander waals forces, etc. The type of molecules that exist in a compound will determine the type of intermolecular forces that will exist among the molecules of that substance. Electrovalent bonds are the strongest type of intermolecular force and it normally exist between metals and non metals. Covalent bonds involved sharing of electrons among the participating elements while vander waals forces are the weakest form of intermolecular forces. Forces are often required to break intermolecular forces apart. Breaking the intermolecular forces apart will destroy the structure of the substance inlvolved.</span>
Answer;
-(2) An atom is mostly empty space.
Experiment
-Rutherford conducted the "gold foil" experiment where he shot alpha particles at a thin sheet of gold. The conclusion that can be drawn from these experiment is that an atom is mostly empty space.
-Rutherford found that a small percentage of the particles were deflected, while a majority passed through the sheet. This caused Rutherford to conclude that the mass of an atom was concentrated at its center, as the tiny, dense nucleus was causing the deflections.
The correct answer is option D, that is, a storage battery is charged using an electric current.
The transformation of one form of energy into another, generally to transform the energy into more useful kind is known as energy conversion. The energy can neither be created nor be destroyed, it can only be transformed. The different forms of energy comprise light, heat, mechanical, electrical, sound, nuclear, and sound.
In the given question, the charging of a storage battery using electric current is an example of electrical energy being converted into chemical energy.
Answer:
180 mg
Explanation:
For a first-order reaction, we can calculate the amount of aspirine (A) at a certain time (t) using the following expression.

where,
k: rate constant
A₀: initial amount
If we know the half-life (
) we can calculate the rate constant.

When t = 4 h and A₀ = 400 mg, A is:

There’s lots of measurements. (m, kg, s, mol, cm, in, mm) etc