Answer:
14.8m
Explanation:
Given parameters:
Initial speed = 17m/s
Unknown:
Maximum height = ?
Solution:
At the maximum height, the final speed will be 0m/s;
We use of the kinematics equation to solve this problem.
V² = U² - 2gH
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height
0² = 17² - (2 x 9.8 x h )
0 = 289 - (9.6h)
-289 = -19.6h
h = 14.8m
Answer:
t=67.7s
Explanation:
From this question we know that:
Vo = 6m/s
a = 1.8 m/s2
D = 1500m
And we also know that:
Replacing the known values:
Solving for t we get 2 possible answers:
t1 = -44.3s and t2 = 67.7s Since negative time represents an instant before the beginning of the movement, t1 is discarded. So, the final answer is:
t = 67.7s
A) 1 rev = 2π rad. Using this ratio, you can find the rad/s: 1160 rev/min x 2π rad/rev x 1 min/60 s = 121.5 rad/s
b) You can find linear speed from angular speed using this equation (note the radius is half the diameter given in the question): v = ωr = 121.5 rad/s x 1.175 m = 142.8 m/s
c) You can find centripetal acceleration using this equation: a = v^2/r = (142.8 m/s)^2 / 1.175 m = 17 355 m/s^2
Answer: 117 kPa
Explanation:
For the liquid at depth 3 m, the gauge pressure is equal to = P₁=39 kPa
For the liquid at depth 9m, the gauge pressure is equal to= P₂
Now we are given the condition that the liquid is same. That must imply that the density must be same throughout the depth.
So, For finding gauge pressure we have formula P= ρ * g * h
Also gravity also remains same for both liquids
So taking ratio of their respective pressures we have
=
So =
Or P₂= 39 * 3 = 117 kPa