The mass of Jupitar is obtained from the calculations as 5.8 * 10^-14 Kg.
<h3>What is the mass of Jupitar?</h3>
There are nine planets in the solar system and the sun lies at the enter of our solar system. This is the heliocentric model of the solar system.
Given that;
T^2 = GMr^3/4π
T = period
G = gravitational constant
r = radius
M = mass of Jupitar
Now;
1 day = 86400 seconds
1.77 days = 1.77 days * 86400 seconds/1 day
= 152928 seconds
Making M the subject of the formula;
M =4πT^2/Gr^3
M = 4 * 3.142 * (152928)^2/6.67 × 10^-11 * (422 × 10^9)^3
M = 2.9 * 10^11/5.0 * 10^24
M = 5.8 * 10^-14 Kg
Learn more about mass of a planet:brainly.com/question/13851553
#SPJ1
I think as a mold. when the Flood came in Genesis, i believe that when the fish were washed away, the kinda made a mold in a rock.
<h2>Answer: Resonance
</h2>
Resonance is a phenomenon that occurs when a body capable of vibrating is subjected to the action of a periodic force, whose frequency of vibration approaches the characteristic frequency of vibration (called resonance frequence) of said body. This is due a relatively small force applied in a repeated form, causing the amplitude of the oscillating system to become very large.
In other words, for the specific case of sound waves, this phenomenon occurs when the frequency of the wave that is external to the system or body coincides with the resonance frequency (characteristic frequency that reaches the maximum degree of oscillation) of this system or body.
In these circumstances the body vibrates, progressively increasing the amplitude of movement after each successive actions of the force. However, this effect can be destructive in some rigid materials.
<span> </span>Most of the stars in the Milky Way will end their lives as white dwarfs
Answer:
Explanation:
1. False
The force you apply on crate is equal and opposite to the force that crate applies on you by Newton's third law of motion.
The force must over come the static frictional force between the crate and the floor.
2. True
The object can move along another direction than the direction of net force. For example, when a car slows down, the net force is opposite to the direction of motion.
3. True
An object moving at constant velocity has zero net force acting on it.
4. False
An object at rest has forces acting on it but the summation of all the forces is zero i.e. the net force is zero.