<u>Answer:</u> The mass of sulfur dioxide gas at STP for given amount is 16.8 g
<u>Explanation:</u>
At STP conditions:
22.4 L of volume is occupied by 1 mole of a gas.
So, 5.9 L of volume will be occupied by = 
Now, to calculate the mass of a substance, we use the equation:

Moles of sulfur dioxide gas = 0.263 mol
Molar mass of sulfur dioxide gas = 64 g/mol
Putting values in above equation, we get:

Hence, the mass of sulfur dioxide gas at STP for given amount is 16.8 g
Answer:
A. a new substance is being produced.
Explanation:
The bubbles most likely indicates that a new substance is being produced by this reaction. In essence, we describe this sort of change as chemical change.
In a chemical change, new substances are usually produced. They are accompanied by the evolution or absorption of energy.
The reaction of Zinc with a strong acid to produce bubbles on the surface of the metal indicates a chemical change and the formation of a new kind of substance.
Take for example, let zinc reacts with hydrocholoric acid, HCl;
Zn + 2HCl → ZnCl₂ + H₂
Since Zn is higher than Hydrogen in the activity series, it will displace it from HCl and liberate hydrogen gas as a product. This will cause the bubbles observed in the reaction.
This is a chemical change and new products have been formed.
B and D are wrong because they are both physical changes.
C is wrong because no information about such is provided by the problem statement.
So, when a piece of zinc metal combines with a strong acid, a new kind of substance is produced.
What are you making a hypothesis for
Answer:
m = 998 g
Explanation:
Hello there!
In this case, according to the definition of the molar mass as the mass of one mole of the compound, it is possible to state the 1 mole of C8H18 has a mass of 114.26 grams; therefore, the mass in 8.65 moles turn out to be:

In agreement to the notation requirement.
Best regards!
Just add more detail in the second experiment explain every little thing.