Complete Question
The complete question is show on the first uploaded image
Answer:
This is shown on the second,third , fourth and fifth image
Explanation:
This is shown on the second,third , fourth and fifth image
A 0.00143 M concentration of MnO4^- is not a reasonable solution .
<h3>Number of moles of carbonate</h3>
The ions left in solution are Na^+ and NO3^-
Number of moles of calcium nitrate = 100/1000 L × 1 = 0.1 moles
Since;
1 mole of sodium carbonate reacts with 1 mole of calcium nitrate then 0.1 moles of sodium carbonate were used.
<h3>Conductivity of filtrate</h3>
The claim of the student that the concentration of sodium carbonate is too low is wrong because the value was calculated from concentration and volume of calcium nitrate and not using the precipitate. If the filtrate is tested for conductivity, it will be found to conduct electricity because it contains sodium and NO3 ions.
2) In the reaction as shown, the MnO4^- ion was reduced.
The initial volume is 3.4 mL while the final volume is 29.6 mL.
Number of moles of MnO4^- ion = (29.6 mL - 3.4 mL)/1000 × 0.0235 M = 0.0006157 moles
<h3>The calculations are performed as follows</h3>
- If 2 moles of MnO4^- reacted with 5 moles of acid
0.0006157 moles of MnO4^- reacted with 0.0006157 moles × 5 moles/ 2 moles
= 0.0015 moles
- In this case, number of moles of acid = 0.139 g/90 g/mol = 0.0015 moles
Number of moles of MnO4^- = 0.00143 M × (29.6 mL - 3.4 mL)/1000
= 0.000037 moles
- If 2 moles of MnO4^- reacts with 5 moles of acid
0.000037 moles of MnO4^- reacts with 0.000037 moles × 5 moles/ 2 moles
= 0.000093 moles
- Hence, this is not a reasonable amount of solution.
Learn more about MnO4^- : brainly.com/question/10887629
B: quantity of solute with a specific volome of solvent.
Have a Nice Day :)
Answer:
54 g
Explanation:
Given data:
Mass of carbon = 18 g
Mass of CO₂ = 72 g
Mass of oxygen needed = ?
Solution:
Chemical reaction:
C + O₂ → CO₂
according to law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
In given photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
In a similar way,
C + O₂ → CO₂
18 g + X = 72
X = 72 -18
X = 54 g
Thus, 54 g of O₂ are required.
To convert 78.1 g of water at 0° C to Ice at -57.1°C; we can do it in steps;
1. Water at 0°C to ice at 0°C
The heat of fusion of ice is 334 J/g;
Heat = 78.1 × 334 = 26085.4 Joules
2. Ice at 0°C to -57.1°C
Specific heat of ice is 2.108 J/g
Heat = 78.1 × 2.108 J/g = 164.6348 Joules
Thus the total heat energy released will be; 26085.4 + 164.6348
= 26250.0348 J or 26.250 kJ