Answer:
B
Step-by-step explanation:
Answer:
Option B, 22
Step-by-step explanation:
Alternate interior angles are same
Answer: The required solution is 
Step-by-step explanation:
We are given to solve the following differential equation :

where k is a constant and the equation satisfies the conditions y(0) = 50, y(5) = 100.
From equation (i), we have

Integrating both sides, we get
![\int\dfrac{dy}{y}=\int kdt\\\\\Rightarrow \log y=kt+c~~~~~~[\textup{c is a constant of integration}]\\\\\Rightarrow y=e^{kt+c}\\\\\Rightarrow y=ae^{kt}~~~~[\textup{where }a=e^c\textup{ is another constant}]](https://tex.z-dn.net/?f=%5Cint%5Cdfrac%7Bdy%7D%7By%7D%3D%5Cint%20kdt%5C%5C%5C%5C%5CRightarrow%20%5Clog%20y%3Dkt%2Bc~~~~~~%5B%5Ctextup%7Bc%20is%20a%20constant%20of%20integration%7D%5D%5C%5C%5C%5C%5CRightarrow%20y%3De%5E%7Bkt%2Bc%7D%5C%5C%5C%5C%5CRightarrow%20y%3Dae%5E%7Bkt%7D~~~~%5B%5Ctextup%7Bwhere%20%7Da%3De%5Ec%5Ctextup%7B%20is%20another%20constant%7D%5D)
Also, the conditions are

and

Thus, the required solution is 
What is the question im solving x for?
Answer:
Your answer will be the third function
Step-by-step explanation:
The base function you need to know is h(t)= 1/2at^2
Your acceleration in this problem is going to be gravity which they give to you, 32 feet per second squared. Since the ball is falling, it means it will have negative acceleration. Now you have the equation h(t)= -16t^2. The final step is to add the initial height from which the ball was dropped giving you: h(t)= -16t^2 +12