Answer:
2.2386 m/s
Explanation:
I think you would use the momentum equation.
m1v1=m2v2
m1= mass of the bag (8.5kg)
v1= speed of bag (6.9 m/s)
m2= mass of bag and cart (26.2 kg)
v2= speed of cart and bag
Plug these numbers all into the equation and you solve for v2 which ends up at 2.2386 m/s
The mass of the second car is 1434.21 kg
<u>Explanation:</u>
Using law of conservation of momentum,

Given:
= 1090 kg
= 11 m/s
= 0
v = 4.75 m/s
We need to find 
When substituting the given values in the above equation, we get





Answer:
true true false true false
Answer:
hence option A is correct
Explanation:
heat required from -9°C to 0°C ice = mass × specific heat of ice ×change in temperature
heat required from -9°C to 0°C ice = 7×2100×9 =132300 J =0.1323 MJ
( HERE SPECIFIC HEAT OF ICE IS A CONSTANT VALUE OF 2100
J/(kg °C )
heat required from 0°C ice to 0°C water = mass× specific heat of fusion of ice
= 7×3.36×10^5
= 2.352 × 10^6 J
= 2.352 MJ
TOTAL HEAT ENERGY REQUIRED = 0.1323 MJ +2.352 MJ
= 2.4843 MJ
hence option A is correct