1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fiasKO [112]
3 years ago
9

Quick does the watermelon have more or less mass then the 2kg bottle?

Physics
1 answer:
Ratling [72]3 years ago
6 0

Answer

it will be less\

Explanation:

You might be interested in
A small object with a 5.0-mC charge is accelerating horizontally on a friction-free surface at 0.0050 m/s2 due only to an electr
kolbaska11 [484]

Answer:

0.002 N/C

Explanation:

Parameters given:

Charge of object, q = 5 mC = 5 * 10^{-3} C

Acceleration of object, a = 0.005 m/s^2

Mass of object, m = 2.0 g

The Electric field exerts a particular force on the object, causing it to accelerate (Electrostatic force).

We know that Electrostatic force, F, is given in terms of Electric field, E, as:

F = qE

This means that the object exerts a force of -qE on the Electric force (Action with equal and opposite reaction).

The object also has a force, F, due to its acceleration a. This force is the product of its mass and acceleration. Mathematically:

F = ma

Equating the two forces of the object, we get:

-qE = ma

=> E = \frac{-ma}{q}

Solving for E, we have:

E = \frac{-2 * 10^{-3} * 0.005}{5 * 10^{-3}} \\\\\\E = -0.002 N/C

The magnitude will be:

|E| = |-0.002| N/C = 0.002 N/C

The electric field has a magnitude of 0.002 N/C.

4 0
3 years ago
A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it
Veseljchak [2.6K]

Incomplete question as the unit of volume is not written correctly.So the complete question is here:

A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it in a graduated cylinder. What is the density of a 240-g rock that displaces 89.0 cm³?

Answer:

d_{Density}=2.7g/cm^{3}

Explanation:

Given data

Mass m=240g

Volume V=89.0 cm³

To find

Density d

Solution

If rock displaces 89.0 cm³ of water means volume of rock is also 89cm³

So

d_{Density}=\frac{mass}{volume}\\d_{Density}=\frac{240g}{89.0cm^{3} } \\d_{Density}=2.7g/cm^{3}

5 0
3 years ago
15 Points , Physics HW, can someone please show me step by step how to calculate percent difference for this problem. My numbers
timofeeve [1]

The percent difference between two numbers x and y is given by

\dfrac{|y-x|}x \times 100\%

The absolute value is there because we only care about the absolute percent difference, and not taking into account whether we go from x to y or vice versa. If we remove them, we have two possible interpretations of percent difference.

For example, the (absolute) percent difference between 3 and 6 is

\dfrac{|6-3|}3 \times 100\% = 100\%

In other words, we add 100% of 3 to 3 to end up with 6. This is the same as the percent difference going from 3 to 6. On the other hand, the percent difference going from 6 to 3 is

\dfrac{3-6}3\times100\%=-50\%

which is to say, we take away 50% of 6 away from 6 to end up with 3.

"Make comparisons to object measurements" tells us that the differences should be computed relative to "measurements for object". In other words, take x from the left column and y from the right column.

\dfrac{|7.1-7.3|}{7.1} \times 100\% \approx 2.82\%

\dfrac{|4.8-5.0|}{4.8} \times 100\% \approx 4.17\%

\dfrac{|7.2-7.5|}{7.2} \times 100\% \approx 4.17\%

3 0
2 years ago
If the elephant were then allowed to fall straight down, how fast would it be moving when it landed back on the ground?
Oxana [17]

Answer:

0 mph because it is probably dead

6 0
3 years ago
A mass free to vibrate on a level, frictionless surface at the end of a horizontal spring is pulled 35 cm from its equilibrium p
saul85 [17]

Answer:

0.67 s

Explanation:

This is a simple harmonic motion (SHM).

The displacement, x, of an SHM is given by

x = A\cos(\omega t)

A is the amplitude and \omega is the angular frequency.

We could use a sine function, in which case we will include a phase angle, to indicate that the oscillation began from a non-equilibrium point. We are using the cosine function for this particular case because the oscillation began from an extreme end, which is one-quarter of a single oscillation, when measured from the equilibrium point. One-quarter of an oscillation corresponds to a phase angle of 90° or \frac{\pi}{4} radian.

From trigonometry, \sin A =\cos B if A and B are complementary.

At t = 0, x = 3.5

3.5 = A\cos(\omega \times0)

A =3.5

So

x = 3.5\cos(\omega t)

At t = 0.12, x = 1.5

1.5 = 3.5\cos(0.12\omega)

\cos(0.12\omega)=\dfrac{1.5}{3.5}=0.4286

0.12\omega =\cos^{-1}0.4286

0.12\omega = 1.13

\omega = 9.4

The period, T, is related to \omega by

T = \dfrac{2\pi}{\omega} = \dfrac{2\times3.14}{9.4}=0.67

5 0
3 years ago
Other questions:
  • You are given a length (l) of wire that has radius (a)and are told to wind it into an inductor in the shape of a helix that has
    5·1 answer
  • What are the benefits of the cool-down period following exercise?
    7·1 answer
  • What forces below earth's surface shape landforms?
    8·1 answer
  • What are three tecnologies tht are used to observe things that are difficult to visit?
    5·1 answer
  • What is cumulative force?
    5·1 answer
  • Describe, in terms of the motion of particles in an object​
    8·1 answer
  • When the tube is filled with mercury vapor, as in this case, a sharp drop in the collected current is observed when the accelera
    9·1 answer
  • A spring has a length of 0.270 m when a 0.300 kg mass hangs from it, and a length of 0.750 m when a 2.80 kg mass hangs from it.
    5·1 answer
  • 1-Autotrophic plants are also called
    11·1 answer
  • An astronaut in space cannot use a conventional means, such as a scale or balance, to determine the mass of an object. But she d
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!