Answer : The specific heat of the substance is 0.0936 J/g °C
Explanation :
The amount of heat Q can be calculated using following formula.

Where Q is the amount of heat required = 300 J
m is the mass of the substance = 267 g
ΔT is the change in temperature = 12°C
C is the specific heat of the substance.
We want to solve for C, so the equation for Q is modified as follows.

Let us plug in the values in above equation.


C = 0.0936 J/g °C
The specific heat of the substance is 0.0936 J/g°C
One kilogram is equal to one thousand grams. Further, one gram is equal to 1000 mg. The conversion is as shown below,
(6.285 x 10³ mg) x (1 g / 1000 mg) x (1 kg / 1000 g)
The numerical value of the operation above is 0.006285 kg.
The appropriate answer is a. HUNTER-GATHERER. Hunter-gatherer societies are nomadic and they forage for edible plants, bean, fruits and nuts. They also hunt wild game for food. Early humans in the Neolithic period practiced this way of life.
Agrarian societies thrive on agriculture which they depend on for sustainable and for trade. Animals and plants are domesticated and so people can settle and build a society. Pastoral agriculture is a semi-nomadic lifestyle where the society is centered around keeping herds of grazing animals. Industrial societies focus on manufacturing and this is the backbone of the society.
Answer:
B) They will react because X and Y can share two pairs of electrons to become stable
Explanation:
The electron configurations of two elements x and y are given :
X: 1s2 2s2 2p6
Y: 1s2 2s2 2p6 3s2 3p6
The statement that is true for both the elements is that, they both will react as they both can share two pairs of electrons to become stable.
To become stable the outermost shell or p orbital should have 8 electrons, so element X can gain 2 atoms to become stable.
Element Y can also react as it can also share two atoms to fulfill its 3p orbital and will stable.
Hence, the correct option is "B".