Explanation:
Given that,
Mass, m = 0.08 kg
Radius of the path, r = 2.7 cm = 0.027 m
The linear acceleration of a yo-yo, a = 5.7 m/s²
We need to find the tension magnitude in the string and the angular acceleration magnitude of the yo‑yo.
(a) Tension :
The net force acting on the string is :
ma=mg-T
T=m(g-a)
Putting all the values,
T = 0.08(9.8-5.7)
= 0.328 N
(b) Angular acceleration,
The relation between the angular and linear acceleration is given by :

(c) Moment of inertia :
The net torque acting on it is,
, I is the moment of inertia
Also, 
So,

Hence, this is the required solution.
Acceleration is the rate of change of velocity
To define acceleration, We need to know more about motion.
Motion: This can be defined as the change in position of a body from one point to another. When an object accelerates, it undergoes motion.
<u>Definition</u>
Acceleration can be defined as the rate of change of velocity. The S.I unit of acceleration is meter-per-squared seconds. (m/s²)
The formula of acceleration is
- a = (v-u)/t................. Equation 1
⇒ Where:
- a = acceleration
- u = initial velocity
- v = final velocity
- t = time
Hence, Acceleration is the rate of change of velocity
Learn more about acceleration here: brainly.com/question/605631
Answer: reactants to this system,...
Explanation:
Answer:
Explanation:
a )
Reaction force of the ground
R = mg
= 160 N
Maximum friction force possible
= μ x R
= μ x 160
= .4 x 160
= 64 N .
b )
160 N will act at middle point . 740N will act at distance of 3 / 5 m from the wall ,
Taking moment about top point of ladder
160 x 1.5 + 740 x 3/5 + f x 4 = 900 x 3
240 + 444 + 4f = 2700
f = 504 N
c )
Let x be the required distance.
Taking moment about top point of ladder
160 x 1.5 + 740 x 3 x / 5 + .4 x 900 x 4 = 900 x 3 ( .4 x 900 is the maximum friction possible )
240 + 444 x + 1440 = 2700
x = 2.3 m
so man can go upto 2.3 at which maximum friction acts .
180 pounds (lb) converts to 81.647 kilograms (kg).