The correct answer of gibbs free energy is -232 KJ.
ΔG = -nFE° = -2*96485*1.20 = -232 (kJ)
The Gibbs free energy of a system at any point in time is defined as its enthalpy minus the product of its temperature times its entropy. Because it is defined in terms of thermodynamic properties that are state functions, the system's Gibbs free energy is a state function. It is commonly referred to as free energy because it is readily available at all times. If necessary, the reaction can steal this energy without having to pay or work for it. The reaction between sodium chloride and water is regarded as spontaneous, and it has a negative G. When solid NaCl is immersed in water, it begins to dissociate on its own without any external assistance.
Learn more about Gibbs free energy here :-
brainly.com/question/20358734
#SPJ4
Answer:
Moles of NO₂ = 0.158
Explanation:
SO 2 ( g ) + NO 2 ( g ) ⇄ SO 3 ( g ) + NO ( g )
According to the law of mass equation
= ![\frac{[SO_{3} ][NO]}{[SO_{2}][NO_{2} ]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BSO_%7B3%7D%20%5D%5BNO%5D%7D%7B%5BSO_%7B2%7D%5D%5BNO_%7B2%7D%20%20%5D%7D)
⇒ 3.10 =
At equilibrium [SO₃] = [NO]
⇒ [NO₂] = 
⇒ [NO₂] = 0.158
So. number of moles of NO₂ at equilibrium added = 0.158
It would be 1.55x10 to the 9th
hope that helps you
Answer:
A 03
Explanation:
jammer as verkeerd
Ek is nog steeds 'n beginner
When 0.514 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.8 C to 29.4 C. Find ⌂E rxn for the combustion of biphenyl in kJ/mol biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/ C.
<span>The answer is - 6.30 * 10^3 kJ/mol
</span>