Answer:
9/11
Step-by-step explanation:
9/11
the number of elements in the union of the A sets is:5(30)−rAwhere r is the number of repeats.Likewise the number of elements in the B sets is:3n−rB
Each element in the union (in S) is repeated 10 times in A, which means if x was the real number of elements in A (not counting repeats) then 9 out of those 10 should be thrown away, or 9x. Likewise on the B side, 8x of those elements should be thrown away. so now we have:150−9x=3n−8x⟺150−x=3n⟺50−x3=n
Now, to figure out what x is, we need to use the fact that the union of a group of sets contains every member of each set. if every element in S is repeated 10 times, that means every element in the union of the A's is repeated 10 times. This means that:150 /10=15is the number of elements in the the A's without repeats counted (same for the Bs as well).So now we have:50−15 /3=n⟺n=45
Answer:
False, it would actually be 106 beads. If this was a multiplication problem, that would also be false, because 6 times 100 is 600, not 350.
But let's attempt to make this statement true.
<u>First/Last step:</u><em> Find the missing beads.</em>
The missing beads are 144.
Why?
Because you must add 144 to reach 250, there is no other way but to multiply. In this case, because the key word is, "In all" we are adding.
Answer:
Yes
Step-by-step explanation:
That number is irrational because it does not repeat and rational number repeats
Answer: 7.5
Step-by-step explanation:
use pythagorean theorem
13^2 + b^2 = 15^2
- 13^2
b^2 = 56 - square root
= 7.5