Answer:
Approximately
(assuming that
.)
Explanation:
Let
denote the force that this spring exerts on the object. Let
denote the displacement of this spring from the equilibrium position.
By Hooke's Law, the spring constant
of this spring would ensure that
.
Note that the mass of the object attached to this spring is
. Thus, the weight of this object would be
.
Assuming that this object is not moving, the spring would need to exert an upward force of the same magnitude on the object. Thus,
.
The spring in this question was stretched downward from its equilibrium by:
.
(Note that
is negative since this displacement points downwards.)
Rearrange Hooke's Law to find
in terms of
and
:
.
A believe that’s called a reference point.
If a pizza is round like a ball it will roll off a cliff.If it’s just flat and round it won’t.
Power dissipation = (voltage across the component)² / (resistance of the component)
Since the resistance is in the denominator of the fraction in this formula for the
quantity of power dissipated, you can see that when the supply voltage is constant,
the smaller resistance dissipates more power.
So the <u>60w bulb</u> has lower resistance than the 40w bulb.