Solid to liquid
Liquid to solid
By adding or removing heat energy aka thermal energy
Answer: b. Throw it directly away from the space station.
Explanation:
According to <u>Newton's third law of motion</u>, <em>when two bodies interact between them, appear equal forces and opposite senses in each of them.</em>
To understand it better:
Each time a body or object exerts a force on a second body or object, it (the second body) will exert a force of equal magnitude but in the opposite direction on the first.
So, if the astronaut throws the wrench away from the space station (in the opposite direction of the space station), according to Newton's third law, she will be automatically moving towards the station and be safe.
Answer:
250 m
Explanation:
The car in this problem is moving of uniform accelerated motion, so we can use the following suvat equation:

where
s is the distance covered
u is the initial velocity
t is the time
a is the acceleration
Assuming the car starts from rest,
u = 0
Also we know that
a = 5 m/s^2 (acceleration of the car)
t = 10 s
Substituting, we find the distance covered:

Answer:
Option B
Solution:
As per the question:
Heat produced at the rate of 10 W
The resistor R and 2R are in series.
Also, in series, same current, I' passes through each element in the circuit.
Therefore, current is constant in series.
Also,
Power,
When current, I' is constant, then
P' ∝ R
Thus

P' = 20 W
V=IR, therefore when resistance is constant the voltage and current are directly proportional