Answer: Oblique impact
Explanation:
When the motion of one or both of the particles is at an angle to the line of impact, the impact is said to be oblique impact.
On the other hand, when the directions of motion of the two colliding particles are moving along a line of impact, then it's refered to as central impact.
Answer: 4m
Explanation:
Since the angle of incidence of a plane mirror can be anything from 0 to 90°
Assuming that the place is a perfectly square 4×4m room
The incident ray would be 45° for the choir(object) at a 4m distance, this is still within the range of values.
We do not forget also, that the focal length of a plane mirror is infinity, the organist would in fact see farther than 4m if need be. And wider
Answer:
98 kg
Mass is given as 10 kg. Therefore, Weight = 10 kg * 9.8 m/s^2. Weight = 98 kg.m/s^2. = 98 Newtons.
Explanation:
plz mark me brainleast
<u>If the disk turns with constant angular velocity, the following statements about it are true
</u>
- The linear acceleration of Q is twice as great as the linear acceleration of P
- is moving twice Q as fast as P.
Answer: Options D and E
<u>Explanation:
</u>
Let us consider that R is the radius of the circular disc. So as Q is on the rim, so the distance of Q from the centre of the disc is R and as P is the midpoint between centre and rim of the disk, so the distance of P from the centre is R/2.
As we know that the angular velocity of the circular disk will be equal to the ratio of distance covered by that point to the time taken. So the angular velocity at point Q will be

As R is the distance of point Q from the centre of the disc.
Similarly
,

So if we equate v with v’ we obtain that

Therefore, the point Q will be moving twice as fast as P. As the velocity of Q is more than O, the linear acceleration of point Q will also be twice as great as the linear acceleration of P.
This is because acceleration is directly proportional to the rate of change in velocity. So if velocity increases in the factor of 2, the acceleration of point Q will also increase twice with respect to point P.
The correct answer to the question is 2.27
i.e the acceleration of the body is 2.27
along the forward direction.
CALCULATION:
As per the question, the net external force on the propeller of model airplane F = 6.8 N.
The mass of the model air plane m = 3.0 kg
We are asked to calculate the acceleration of the air plane.
From Newton's second law of motion, we know that the net external force acting on a body is equal to the product of mass with acceleration of that body.
Mathematically force F = m × a
⇒ 

[ans]
The direction of acceleration is along the direction of force. Hence, the acceleration of the propeller is 2.27
along forward direction.