Answer:
To be able to eat the food readily available in the environment
Answer:
Definitely Spinning permanent magnets within an array of fixed permanent magnets
Explanation:
Any relative motion between magnets (be they permanent or electromagnetic) and a coil of wire will induce an electric current in the coil.
What will not induce an electric current is the relative motion between the two coils of wire (because there is no change in magnetic field), or the relative motion between two magnets (there are no coils of wire to induce the current into).
<em>Therefore, spinning permanent magnets within an array of fixed permanent magnets does not induce an electric current.</em>
Answer:

Explanation:
When the rock is immersed in unknown liquid the forces that act on it are shown as under
1) Tension T by the string
2) Weight W of the rock
3) Force of buoyancy due to displaced liquid B
For equilibrium we have 
=
When the rock is suspended in air for equilibrium we have

When the rock is suspended in water for equilibrium we have
+
=
Using the given values of tension and solving α,β,γ simultaneously for
we get

Solving for density of liquid we get


Answer:
a. The sheets move toward each other and the gap narrows.
Explanation:
This exercise is related to fluid mechanics, when blowing between the two sheets, we can apply Bernoulli's equation, where the index 2 is the space between the two sheets
P₁ + ½ ρ g v₁² + ρ g y₁ = P₂ + ½ ρ g v₂² + ρ g y²
if the two leaves are at the same height
y₁ = y₂
whereby
P₁ + ½ ρ g v₁² = P₂ + ½ ρ v₂²
for the air velocity between the leaves let us use the continuity equation
A₁ v₁ = A₂ v₂
the area between the leaves is less than the external area, so the air speed must increase. If we use this in Bernoulli's equation, increasing the speed 2 (between the leaves) to maintain equality the pressure must decrease.
If the pressure decreases, the blades should move closer
When resisting the answers, the correct one is a
Answer:
Explanation:
The 2 equations we need here are, first:
and then once we solve for the acceleration here:
Δx
Solving for acceleration:
and now we will use that in the other equation:
Δx and
36 = 16 +
Δx and
20 =
Δx and
Δx so
Δx = 50 m