Answer:
It increases.
Explanation:
If a force acts in the same direction as the object's motion, then the force speeds the object up. Either way, a force will change the velocity of an object. And if the velocity of the object is changed, then the momentum of the object is changed.
If its atomic number is 48, then it has 48 protons in the nucleus
of each atom. Any more mass than that is supplied by the neutrons
that are mixed in there with the protons.
If the mass is 167, and 48 of those are protons, then there are
(167 - 48) = 119 neutrons
in each nucleus.
Answer:
The era of planet formation ended when the remaining hydrogen and helium gas of the solar nebula was swept into interstellar space by the solar winds.
Explanation:
The Solar System is formed from a molecular cloud (compound by gas and dust). If there is a near perturbation to the cloud, maybe due to a supernova explosion, the molecular cloud will collapse under its own gravity. Then, in some point it starts to rotate and will accrete all the material in a disk around the protostar¹.
Inside the disk, dust particles start to collide and accrete until they form planetesimals². As a consequence of the gravitational force of the star, rocky and metallic particles will be more attracted to the inner part of the Solar System (close to the Sun) since they have more mass than gas.
Then, when the star has the necessary pressure and temperature to initiate nuclear reactions in its core, it will be able to emit huge amounts of energy, better known as solar winds. These winds will expel gas (hydrogen and helium) from the Solar System more easily than the rocky and metallic particles.
Notice that when such event occurs, rocky and gaseous planets were already formed.
Key terms:
¹Protostar: A young star.
²Planetesimals: Object formed by many fragments due to the gravitational attraction between them.
Answer:
37.545 m/s
Explanation:
f' = Actual frequency of horn = 269 Hz
f = Observed frequency of horn = 290 Hz
v = Speed of sound in air = 343 m/s
= Speed of second train = 13.7 m/s
= Speed of first train
From Doppler effect we have

The speed of the first train is 37.545 m/s
Answer:
14 m/s
Explanation:
The motion of the stone is a free fall motion, so an accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground. So, we can use the following SUVAT equation:

where
v is the final speed of the stone as it reaches the water
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
h = 10 m is the distance covered by the stone
Solving for v, we find
