The variable that is altered by the independent variable is called the dependent variable. the spectrum given out by the hypothetical unknown celestial object.
Name : Christopher Andre
Instructor name : Albert brown
Name of the lab : ELS Laboratory
The term electromagnetic spectrum refers to the range of electromagnetic radiation's frequencies, as well as the wavelengths and photon energies connected to each frequency.
By analyzing the absorption spectra of the planets and moons, the electromagnetic spectrum experiment seeks to identify the components that make up their atmospheres.
From below one hertz to over 1025 hertz, electromagnetic waves are included in the electromagnetic spectrum.
The wavelengths that correlate to the frequency range from tens of thousands of kilometers to a small portion of the size of an atomic nucleus.
Starting at the low frequency (long wavelength) end of the spectrum, each frequency band's electromagnetic waves are referred to by a variety of names.
Hence the dependent variable is the one that changes as a result of the independent variable.
Learn more about electromagnetic spectrum here
brainly.com/question/13803241
#SPJ10
Answer:
A. Its translational kinetic energy is larger than its rotational kinetic energy.
Explanation:
Given that
Radius = R
Mass = M
We know that mass moment of inertia for the solid sphere

Lets take angular speed =ω
Linear speed =V
Condition for pure rolling , V= ω R
Rotation energy ,RE





RE= 0.2 MV²
The transnational kinetic energy TE

TE= 0.5 MV²
From above we can say that transnational energy is more than rotational energy.
Therefore the answer is A.
Answer:
Answer below!!!!
Explanation:
Convection is the transfer of thermal energy by particles moving through a fluid.
Hope I Helped!!!
;)
Answer:
The ratio of the energy stored by spring #1 to that stored by spring #2 is 2:1
Explanation:
Let the weight that is hooked to two springs be w.
Spring#1:
Force constant= k
let x1 be the extension in spring#1
Therefore by balancing the forces, we get
Spring force= weight
⇒k·x1=w
⇒x1=w/k
Energy stored in a spring is given by
where k is the force constant and x is the extension in spring.
Therefore Energy stored in spring#1 is, 
⇒
⇒
Spring #2:
Force constant= 2k
let x2 be the extension in spring#2
Therefore by balancing the forces, we get
Spring force= weight
⇒2k·x2=w
⇒x2=w/2k
Therefore Energy stored in spring#2 is, 
⇒
⇒
∴The ratio of the energy stored by spring #1 to that stored by spring #2 is
2:1
Answer:
a) yield strength

b) modulus of elasticity
strain calculation

strain for offset yield point

=0.0046-0.002 = 0.0026
now, modulus of elasticity
= 184615.28 MPa = 184.615 GPa
c) tensile strength

d) percentage elongation

e) percentage of area reduction