At a point near the rim of the disk, it will have a<span> non-zero radial acceleration and a zero tangential acceleration. Also known as centripetal acceleration, radial acceleration takes place along the radius of the disk. On the other hand, the tangential acceleration is along the path of disk's motion.</span>
The first thing you should know in this case is the following definition:
PV = nRT
Then, as the temperature is constant, then:
PV = k
Then, we have two states:
P1V1 = k
P2V2 = k
We can then equalize both equations:
P1V1 = P2V2
Substituting the values:
(1.25) * (101) = (2.25) * (P2)
Clearing P2:
P2 = ((1.25) * (101)) /(2.25)=56.11Kpa
answer:
the new pressure inside the jar is 56.11Kpa
Answer:
1)
is<u> positive.</u>
<u></u>
2) 
Explanation:
<h2><u>
Part 1:</u></h2>
<u></u>
The charged rod is held above the balloon and the weight of the balloon acts in downwards direction. To balance the weight of the balloon, the force on the balloon due to the rod must be directed along the upwards direction, which is only possible when the rod exerts an attractive force on the balloon and the electrostatic force on the balloon due to the rod is attractive when the polarities of the charge on the two are different.
Thus, In order for this to occur, the polarity of charge on the rod must be positive, i.e.,
is <u>positive.</u>
<u></u>
<h2><u>
Part 2:</u></h2>
<u></u>
<u>Given:</u>
- Mass of the balloon, m = 0.00275 kg.
- Charge on the balloon,

- Distance between the rod and the balloon, d = 0.0640 m.
- Acceleration due to gravity,

In order to balloon to be float in air, the weight of the balloom must be balanced with the electrostatic force on the balloon due to rod.
Weight of the balloon, 
The magnitude of the electrostatic force on the balloon due to the rod is given by

is the Coulomb's constant.
For the elecric force and the weight to be balanced,

Answer:

Explanation:
<u>Frictional Force
</u>
When the car is moving along the curve, it receives a force that tries to take it from the road. It's called centripetal force and the formula to compute it is:

The centripetal acceleration a_c is computed as

Where v is the tangent speed of the car and r is the radius of curvature. Replacing the formula into the first one

For the car to keep on the track, the friction must have the exact same value of the centripetal force and balance the forces. The friction force is computed as

The normal force N is equal to the weight of the car, thus

Equating both forces

Simplifying

Substituting the values

